
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MÜLLER, NVIDIA, Switzerland

ALEX EVANS, NVIDIA, United Kingdom

CHRISTOPH SCHIED, NVIDIA, USA

ALEXANDER KELLER, NVIDIA, Germany

https://nvlabs.github.io/instant-ngp

Trained for 1 second 15 seconds 1 second 15 seconds 60 seconds reference

G
i
g
a
p
i
x
e
l
i
m
a
g
e

S
D
F

N
R
C

N
e
R
F

Fig. 1. We demonstrate instant training of neural graphics primitives on a single GPU for multiple tasks. In Gigapixel image we represent a gigapixel image by

a neural network. SDF learns a signed distance function in 3D space whose zero level-set represents a 2D surface. Neural radiance caching (NRC) [Müller

et al. 2021] employs a neural network that is trained in real-time to cache costly lighting calculations. Lastly, NeRF [Mildenhall et al. 2020] uses 2D images

and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching. In all tasks, our encoding and its

efficient implementation provide clear benefits: rapid training, high quality, and simplicity. Our encoding is task-agnostic: we use the same implementation

and hyperparameters across all tasks and only vary the hash table size which trades off quality and performance. Tokyo gigapixel photograph ©Trevor

Dobson (CC BY-NC-ND 2.0), Lego bulldozer 3D model ©Håvard Dalen (CC BY-NC 2.0)

Neural graphics primitives, parameterized by fully connected neural net-

works, can be costly to train and evaluate.We reduce this cost with a versatile

new input encoding that permits the use of a smaller network without sac-

rificing quality, thus significantly reducing the number of floating point

and memory access operations: a small neural network is augmented by a

multiresolution hash table of trainable feature vectors whose values are op-

timized through stochastic gradient descent. The multiresolution structure

allows the network to disambiguate hash collisions, making for a simple

Authors’ addresses: Thomas Müller, NVIDIA, Zürich, Switzerland, tmueller@nvidia.

com; Alex Evans, NVIDIA, London, United Kingdom, alexe@nvidia.com; Christoph

Schied, NVIDIA, Seattle, USA, cschied@nvidia.com; Alexander Keller, NVIDIA, Berlin,

Germany, akeller@nvidia.com.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530127.

architecture that is trivial to parallelize on modern GPUs. We leverage this

parallelism by implementing the whole system using fully-fused CUDA ker-

nels with a focus on minimizing wasted bandwidth and compute operations.

We achieve a combined speedup of several orders of magnitude, enabling

training of high-quality neural graphics primitives in a matter of seconds,

and rendering in tens of milliseconds at a resolution of 1920×1080.

CCS Concepts: • Computing methodologies→ Massively parallel algo-
rithms; Vector / streaming algorithms; Neural networks.

Additional Key Words and Phrases: Image Synthesis, Neural Networks, En-

codings, Hashing, GPUs, Parallel Computation, Function Approximation.

ACM Reference Format:
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding.

ACM Trans. Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.

1145/3528223.3530127

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

https://nvlabs.github.io/instant-ngp
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

102:2 • Müller et al.

1 INTRODUCTION

Computer graphics primitives are fundamentally represented by

mathematical functions that parameterize appearance. The quality

and performance characteristics of the mathematical representation

are crucial for visual fidelity: we desire representations that remain

fast and compact while capturing high-frequency, local detail. Func-

tions represented by multi-layer perceptrons (MLPs), used as neural
graphics primitives, have been shown to match these criteria (to

varying degree), for example as representations of shape [Martel

et al. 2021; Park et al. 2019] and radiance fields [Liu et al. 2020;

Mildenhall et al. 2020; Müller et al. 2020, 2021].

The important commonality of the these approaches is an encod-

ing that maps neural network inputs to a higher-dimensional space,

which is key for extracting high approximation quality from com-

pact models. Most successful among these encodings are trainable,

task-specific data structures [Liu et al. 2020; Takikawa et al. 2021]

that take on a large portion of the learning task. This enables the use

of smaller, more efficient MLPs. However, such data structures rely

on heuristics and structural modifications (such as pruning, split-

ting, or merging) that may complicate the training process, limit

the method to a specific task, or limit performance on GPUs where

control flow and pointer chasing is expensive.

We address these concerns with our multiresolution hash encod-

ing, which is adaptive and efficient, independent of the task. It is

configured by just two values—the number of parameters 𝑇 and the

desired finest resolution 𝑁max—yielding state-of-the-art quality on

a variety of tasks (Figure 1) after a few seconds of training.

Key to both the task-independent adaptivity and efficiency is a

multiresolution hierarchy of hash tables:

• Adaptivity: we map a cascade of grids to corresponding fixed-

size arrays of feature vectors. At coarse resolutions, there is a 1:1

mapping from grid points to array entries. At fine resolutions, the

array is treated as a hash table and indexed using a spatial hash

function, where multiple grid points alias each array entry. Such

hash collisions cause the colliding training gradients to average,

meaning that the largest gradients—those most relevant to the

loss function—will dominate. The hash tables thus automatically
prioritize the sparse areaswith themost important fine scale detail.

Unlike prior work, no structural updates to the data structure are

needed at any point during training.

• Efficiency: our hash table lookups are O(1) and do not require

control flow. This maps well to modern GPUs, avoiding execution

divergence and serial pointer-chasing inherent in tree traversals.

The hash tables for all resolutions may be queried in parallel.

We validate our multiresolution hash encoding in four representa-

tive tasks (see Figure 1):

(1) Gigapixel image: the MLP learns the mapping from 2D coordi-

nates to RGB colors of a high-resolution image.

(2) Neural signed distance functions (SDF): the MLP learns the

mapping from 3D coordinates to the distance to a surface.

(3) Neural radiance caching (NRC): the MLP learns the 5D light

field of a given scene from a Monte Carlo path tracer.

(4) Neural radiance and density fields (NeRF): the MLP learns

the 3D density and 5D light field of a given scene from image

observations and corresponding perspective transforms.

In the following, we first review prior neural network encodings

(Section 2), then we describe our encoding (Section 3) and its imple-

mentation (Section 4), followed lastly by our experiments (Section 5)

and discussion thereof (Section 6).

2 BACKGROUND AND RELATED WORK

Early examples of encoding the inputs of a machine learning model

into a higher-dimensional space include the one-hot encoding [Har-

ris andHarris 2013] and the kernel trick [Theodoridis 2008] bywhich

complex arrangements of data can be made linearly separable.

For neural networks, input encodings have proven useful in the at-

tention components of recurrent architectures [Gehring et al. 2017]

and, subsequently, transformers [Vaswani et al. 2017], where they

help the neural network to identify the location it is currently pro-

cessing. Vaswani et al. [2017] encode scalar positions 𝑥 ∈ R as a

multiresolution sequence of 𝐿 ∈ N sine and cosine functions

enc(𝑥) =
(
sin(20𝑥), sin(21𝑥), . . . , sin(2𝐿−1𝑥),

cos(20𝑥), cos(21𝑥), . . . , cos(2𝐿−1𝑥)
)
. (1)

This has been adopted in computer graphics to encode the spatio-

directionally varying light field and volume density in the NeRF

algorithm [Mildenhall et al. 2020]. The five dimensions of this light

field are independently encoded using the above formula; this was

later extended to randomly oriented parallel wavefronts [Tancik

et al. 2020] and level-of-detail filtering [Barron et al. 2021a]. We will

refer to this family of encodings as frequency encodings. Notably,
frequency encodings followed by a linear transformation have been

used in other computer graphics tasks, such as approximating the

visibility function [Annen et al. 2007; Jansen and Bavoil 2010].

Müller et al. [2019; 2020] suggested a continuous variant of the

one-hot encoding based on rasterizing a kernel, the one-blob en-

coding, which can achieve more accurate results than frequency

encodings in bounded domains at the cost of being single-scale.

Parametric encodings. Recently, state-of-the-art results have been
achieved by parametric encodings which blur the line between clas-

sical data structures and neural approaches. The idea is to arrange

additional trainable parameters (beyond weights and biases) in an

auxiliary data structure, such as a grid [Chabra et al. 2020; Jiang

et al. 2020; Liu et al. 2020; Mehta et al. 2021; Peng et al. 2020a; Sun

et al. 2021; Tang et al. 2018; Yu et al. 2021a] or a tree [Takikawa et al.

2021], and to look-up and (optionally) interpolate these parameters

depending on the input vector x ∈ R𝑑 . This arrangement trades a

larger memory footprint for a smaller computational cost: whereas

for each gradient propagated backwards through the network, every

weight in the fully connected MLP network must be updated, for

the trainable input encoding parameters (“feature vectors”), only

a very small number are affected. For example, with a trilinearly

interpolated 3D grid of feature vectors, only 8 such grid points need

to be updated for each sample back-propagated to the encoding. In

this way, although the total number of parameters is much higher

for a parametric encoding than a fixed input encoding, the number

of FLOPs and memory accesses required for the update during train-

ing is not increased significantly. By reducing the size of the MLP,

such parametric models can typically be trained to convergence

much faster without sacrificing approximation quality.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:3

(a) No encoding (b) Frequency
[Mildenhall et al. 2020]

(c) Dense grid
Single resolution

(d) Dense grid
Multi resolution

(e) Hash table (ours)

𝑇 = 2
14

(f) Hash table (ours)

𝑇 = 2
19

411 k + 0 parameters 438 k + 0 10 k + 33.6M 10 k + 16.3M 10 k + 494 k 10 k + 12.6M

11:28 (mm:ss) / PSNR 18.56 12:45 / PSNR 22.90 1:09 / PSNR 22.35 1:26 / PSNR 23.62 1:48 / PSNR 22.61 1:47 / PSNR 24.58

Fig. 2. A demonstration of the reconstruction quality of different encodings and parametric data structures for storing trainable feature embeddings. Each

configuration was trained for 11 000 steps using our fast NeRF implementation (Section 5.4), varying only the input encoding and MLP size. The number of

trainable parameters (MLP weights + encoding parameters), training time and reconstruction accuracy (PSNR) are shown below each image. Our encoding (e)
with a similar total number of trainable parameters as the frequency encoding configuration (b) trains over 8× faster, due to the sparsity of updates to the

parameters and smaller MLP. Increasing the number of parameters (f) further improves reconstruction accuracy without significantly increasing training time.

Another parametric approach uses a tree subdivision of the do-

main R𝑑 , wherein a large auxiliary coordinate encoder neural net-
work (ACORN) [Martel et al. 2021] is trained to output dense feature

grids in the leaf node around x. These dense feature grids, which
have on the order of 10 000 entries, are then linearly interpolated, as

in Liu et al. [2020]. This approach tends to yield a larger degree of

adaptivity compared with the previous parametric encodings, albeit

at greater computational cost which can only be amortized when

sufficiently many inputs x fall into each leaf node.

Sparse parametric encodings. While existing parametric encod-

ings tend to yield much greater accuracy than their non-parametric

predecessors, they also come with downsides in efficiency and versa-

tility. Dense grids of trainable features consumemuchmore memory

than the neural network weights. To illustrate the trade-offs and to

motivate our method, Figure 2 shows the effect on reconstruction

quality of a neural radiance field for several different encodings.

Without any input encoding at all (a), the network is only able to

learn a fairly smooth function of position, resulting in a poor ap-

proximation of the light field. The frequency encoding (b) allows
the same moderately sized network (8 hidden layers, each 256 wide)

to represent the scene much more accurately. The middle image (c)
pairs a smaller network with a dense grid of 128

3
trilinearly inter-

polated, 16-dimensional feature vectors, for a total of 33.6 million

trainable parameters. The large number of trainable parameters can

be efficiently updated, as each sample only affects 8 grid points.

However, the dense grid is wasteful in two ways. First, it allocates

as many features to areas of empty space as it does to those areas

near the surface. The number of parameters grows as O(𝑁 3), while
the visible surface of interest has surface area that grows only as

O(𝑁 2). In this example, the grid has resolution 128
3
, but only 53 807

(2.57%) of its cells touch the visible surface.

Second, natural scenes exhibit smoothness, motivating the use

of a multi-resolution decomposition [Chibane et al. 2020; Hadadan

et al. 2021]. Figure 2 (d) shows the result of using an encoding in

which interpolated features are stored in eight co-located grids with

resolutions from 16
3
to 173

3
, each containing 2-dimensional feature

vectors. These are concatenated to form a 16-dimensional (same as

(c)) input to the network. Despite having less than half the number

of parameters as (c), the reconstruction quality is similar.

If the surface of interest is known a priori, a data structure such

as an octree [Takikawa et al. 2021] or sparse grid [Chabra et al.

2020; Chibane et al. 2020; Hadadan et al. 2021; Jiang et al. 2020; Liu

et al. 2020; Peng et al. 2020a] can be used to cull away the unused

features in the dense grid. However, in the NeRF setting, surfaces

only emerge during training. NSVF [Liu et al. 2020] and several

concurrent works [Sun et al. 2021; Yu et al. 2021a] adopt a multi-

stage, coarse to fine strategy in which regions of the feature grid are

progressively refined and culled away as necessary. While effective,

this leads to a more complex training process in which the sparse

data structure must be periodically updated.

Our method—Figure 2 (e,f)—combines both ideas to reduce waste.

We store the trainable feature vectors in a compact spatial hash table,

whose size is a hyper-parameter 𝑇 which can be tuned to trade the

number of parameters for reconstruction quality. It neither relies on

progressive pruning during training nor on a priori knowledge of the

geometry of the scene. Analogous to the multi-resolution grid in (d),
we use multiple separate hash tables indexed at different resolutions,

whose interpolated outputs are concatenated before being passed

through the MLP. The reconstruction quality is comparable to the

dense grid encoding, despite having 20× fewer parameters.

Unlike prior work that used spatial hashing [Teschner et al. 2003]

for 3D reconstruction [Nießner et al. 2013], we do not explicitly han-

dle collisions of the hash functions by typical means like probing,

bucketing, or chaining. Instead, we rely on the neural network to

learn to disambiguate hash collisions itself, avoiding control flow

divergence, reducing implementation complexity and improving

performance. Another performance benefit is the predictable mem-

ory layout of the hash tables that is independent of the data that is

represented. While good caching behavior is often hard to achieve

with tree-like data structures, our hash tables can be fine-tuned for

low-level architectural details such as cache size.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

102:4 • Müller et al.

x

y

𝑚 (y;Φ)

𝑇

𝐹

𝐿 · 𝐹

𝐸

𝜉

𝐿 = 2, 𝑏 = 1.5

1/𝑁1

1/𝑁0

𝑙 = 0

𝑙 = 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

02

3 6

0 4

1 7

(1) Hashing of voxel vertices (2) Lookup (3) Linear interpolation (4) Concatenation (5) Neural network

Fig. 3. Illustration of the multiresolution hash encoding in 2D. (1) for a given input coordinate x, we find the surrounding voxels at 𝐿 resolution levels and

assign indices to their corners by hashing their integer coordinates. (2) for all resulting corner indices, we look up the corresponding 𝐹 -dimensional feature

vectors from the hash tables 𝜃𝑙 and (3) linearly interpolate them according to the relative position of x within the respective 𝑙-th voxel. (4) we concatenate the
result of each level, as well as auxiliary inputs 𝜉 ∈ R𝐸 , producing the encoded MLP input 𝑦 ∈ R𝐿𝐹+𝐸 , which (5) is evaluated last. To train the encoding, loss

gradients are backpropagated through the MLP (5), the concatenation (4), the linear interpolation (3), and then accumulated in the looked-up feature vectors.

Table 1. Hash encoding parameters and their ranges in our results. Only

the hash table size𝑇 and max. resolution 𝑁max need to be tuned to the task.

Parameter Symbol Value

Number of levels 𝐿 16

Max. entries per level (hash table size) 𝑇 2
14

to 2
24

Number of feature dimensions per entry 𝐹 2

Coarsest resolution 𝑁min 16

Finest resolution 𝑁max 512 to 524288

3 MULTIRESOLUTION HASH ENCODING

Given a fully connected neural network𝑚(y;Φ), we are interested in
an encoding of its inputs y = enc(x;𝜃) that improves the approxima-

tion quality and training speed across a wide range of applications

without incurring a notable performance overhead. Our neural net-

work not only has trainable weight parameters Φ, but also trainable
encoding parameters 𝜃 . These are arranged into 𝐿 levels, each con-

taining up to𝑇 feature vectors with dimensionality 𝐹 . Typical values

for these hyperparameters are shown in Table 1. Figure 3 illustrates

the steps performed in our multiresolution hash encoding. Each

level (two of which are shown as red and blue in the figure) is inde-

pendent and conceptually stores feature vectors at the vertices of a

grid, the resolution of which is chosen to be a geometric progression

between the coarsest and finest resolutions [𝑁min, 𝑁max]:

𝑁𝑙 :=

⌊
𝑁min · 𝑏𝑙

⌋
, (2)

𝑏 := exp

(
ln𝑁max − ln𝑁min

𝐿 − 1

)
. (3)

𝑁max is chosen to match the finest detail in the training data. Due

to the large number of levels 𝐿, the growth factor is usually small.

Our use cases have 𝑏 ∈ [1.26, 2].
Consider a single level 𝑙 . The input coordinate x ∈ R𝑑 is scaled

by that level’s grid resolution before rounding down and up ⌊x𝑙 ⌋ :=
⌊x · 𝑁𝑙 ⌋, ⌈x𝑙 ⌉ := ⌈x · 𝑁𝑙 ⌉.

⌊x𝑙 ⌋ and ⌈x𝑙 ⌉ span a voxel with 2
𝑑
integer vertices in Z𝑑 . We map

each corner to an entry in the level’s respective feature vector array,

which has fixed size of at most𝑇 . For coarse levels where a dense grid

requires fewer than 𝑇 parameters, i.e. (𝑁𝑙 + 1)𝑑 ≤ 𝑇 , this mapping

is 1:1. At finer levels, we use a hash function ℎ : Z𝑑 → Z𝑇 to index

into the array, effectively treating it as a hash table, although there is

no explicit collision handling. We rely instead on the gradient-based

optimization to store appropriate sparse detail in the array, and the

subsequent neural network 𝑚(y;Φ) for collision resolution. The

number of trainable encoding parameters 𝜃 is therefore O(𝑇) and
bounded by 𝑇 · 𝐿 · 𝐹 which in our case is always 𝑇 · 16 · 2 (Table 1).

We use a spatial hash function [Teschner et al. 2003] of the form

ℎ(x) =
(

𝑑⊕
𝑖=1

𝑥𝑖𝜋𝑖

)
mod 𝑇 , (4)

where ⊕ denotes the bit-wise XOR operation and 𝜋𝑖 are unique,

large prime numbers. Effectively, this formula XORs the results

of a per-dimension linear congruential (pseudo-random) permuta-

tion [Lehmer 1951], decorrelating the effect of the dimensions on

the hashed value. Notably, to achieve (pseudo-)independence, only

𝑑 − 1 of the 𝑑 dimensions must be permuted, so we choose 𝜋1 := 1

for better cache coherence, 𝜋2 = 2 654 435 761, and 𝜋3 = 805 459 861.

Lastly, the feature vectors at each corner are 𝑑-linearly interpo-

lated according to the relative position of x within its hypercube,

i.e. the interpolation weight is w𝑙 := x𝑙 − ⌊x𝑙 ⌋.
Recall that this process takes place independently for each of the

𝐿 levels. The interpolated feature vectors of each level, as well as

auxiliary inputs 𝜉 ∈ R𝐸 (such as the encoded view direction and

textures in neural radiance caching), are concatenated to produce

y ∈ R𝐿𝐹+𝐸 , which is the encoded input enc(x;𝜃) to theMLP𝑚(y;Φ).

Performance vs. quality. Choosing the hash table size𝑇 provides a

trade-off between performance, memory and quality. Higher values

of 𝑇 result in higher quality and lower performance. The memory

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:5

0 100 200

30

40

50

𝑇 = 2
16

𝑇 = 2
19

𝑇 = 2
24

Training time (seconds)

P
S
N
R
(
d
B
)

Gigapixel image

Pluto

Mars

Tokyo

0 50 100 150

20

25

30

𝑇 = 2
14

𝑇 = 2
19

𝑇 = 2
21

Training time (seconds)

M
A
P
E
(
d
B
)

SDF

Clockwork

Lizard

Bearded Man

0 100 200 300

30

35

𝑇 = 2
14

𝑇 = 2
19 𝑇 = 2

21

Training time (seconds)

P
S
N
R
(
d
B
)

NeRF

Lego

Ship

Fig. 4. The main curves plot test error over training time for varying hash table size 𝑇 which determines the number of trainable encoding parameters.

Increasing𝑇 improves reconstruction, at the cost of higher memory usage and slower training and inference. A performance cliff is visible at𝑇 > 2
19

where

the cache of our RTX 3090 GPU becomes oversubscribed (particularly visible for SDF and NeRF). The plot also shows model convergence over time leading up

to the final state. This highlights how high quality results are already obtained after only a few seconds. Jumps in the convergence (most visible towards the

end of SDF training) are caused by learning rate decay. For NeRF and Gigapixel image, training finishes after 31 000 steps and for SDF after 11 000 steps.

200 300 400

25

30

35

40

𝐿 = 2

𝐿 = 4

𝐿 = 8

𝐿 = 16
𝐿 = 32

Training time (seconds)

P
S
N
R
(
d
B
)

Gigapixel image: Tokyo

F=1

F=2

F=4

F=8

60 80 100

20

21

22

𝐿 = 4

𝐿 = 8

𝐿 = 16

𝐿 = 32

Training time (seconds)

M
A
P
E
(
d
B
)

Signed Distance Function: Cow

F=1

F=2

F=4

F=8

200 300 400 500

33

34

35

36

𝐿 = 4

𝐿 = 8

𝐿 = 16

𝐿 = 32

Training time (seconds)

P
S
N
R
(
d
B
)

Neural Radiance Field: Lego

F=1

F=2

F=4

F=8

Fig. 5. Test error over training time for fixed values of feature dimensionality 𝐹 as the number of hash table levels 𝐿 is varied. To maintain a roughly equal

trainable parameter count, the hash table size𝑇 is set according to 𝐹 ·𝑇 · 𝐿 = 2
24

for SDF and NeRF, whereas gigapixel image uses 2
28
. Since (𝐹 = 2, 𝐿 = 16)

is near the best-case performance and quality (top-left) for all applications, we use this configuration in all results. 𝐹 = 1 is slow on our RTX 3090 GPU since

atomic half-precision accumulation is only efficient for 2D vectors but not for scalars. For NeRF and Gigapixel image, training finishes after 31 000 steps

whereas SDF completes at 11 000 steps.

footprint is linear in 𝑇 , whereas quality and performance tend to

scale sub-linearly. We analyze the impact of𝑇 in Figure 4, where we

report test error vs. training time for a wide range of 𝑇 -values for

three neural graphics primitives.We recommend practitioners to use

𝑇 to tweak the encoding to their desired performance characteristics.

The hyperparameters 𝐿 (number of levels) and 𝐹 (number of fea-

ture dimensions) also trade off quality and performance, which we

analyze for an approximately constant number of trainable encoding

parameters 𝜃 in Figure 5. In this analysis, we found (𝐹 = 2, 𝐿 = 16)
to be a favorable Pareto optimum in all our applications, so we use

these values in all other results and recommend them as the default.

Implicit hash collision resolution. It may appear counter-intuitive

that this encoding is able to reconstruct scenes faithfully in the

presence of hash collisions. Key to its success is that the different

resolution levels have different strengths that complement each

other. The coarser levels, and thus the encoding as a whole, are

injective—that is, they suffer from no collisions at all. However, they

can only represent a low-resolution version of the scene, since they

offer features which are linearly interpolated from a widely spaced

grid of points. Conversely, fine levels can capture small features due

to their fine grid resolution, but suffer from many collisions—that is,

disparate points which hash to the same table entry. Nearby inputs

with equal integer coordinates ⌊x𝑙 ⌋ are not considered a collision;

a collision occurs when different integer coordinates hash to the

same index. Luckily, such collisions are pseudo-randomly scattered

across space, and statistically unlikely to occur simultaneously at

every level for a given pair of points.

When training samples collide in this way, their gradients average.

Consider that the importance to the final reconstruction of such

samples is rarely equal. For example, a point on a visible surface

of a radiance field will contribute strongly to the reconstructed

image (having high visibility and high density, both multiplicatively

affecting the magnitude of gradients) causing large changes to its

table entries, while a point in empty space that happens to refer to

the same entry will have a much smaller weight. As a result, the

gradients of the more important samples dominate the collision

average and the aliased table entry will naturally be optimized in

such a way that it reflects the needs of the higher-weighted point.

The multiresolution aspect of the hash encoding covers the full

range from a coarse resolution𝑁min that is guaranteed to be collision-

free to the finest resolution 𝑁max that the task requires. Thereby, it

guarantees that all scales at which meaningful learning could take

place are included, regardless of sparsity. Geometric scaling allows

covering these scales with only O
(
log (𝑁max/𝑁min)

)
many levels,

which allows picking a conservatively large value for 𝑁max.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

102:6 • Müller et al.

Online adaptivity. Note that if the distribution of inputs x changes
over time during training, for example if they become concentrated

in a small region, then finer grid levels will experience fewer colli-

sions and a more accurate function can be learned. In other words,

the multiresolution hash encoding automatically adapts to the train-

ing data distribution, inheriting the benefits of tree-based encod-

ings [Takikawa et al. 2021] without task-specific data structure

maintenance that might cause discrete jumps during training. One

of our applications, neural radiance caching in Section 5.3, con-

tinually adapts to animated viewpoints and 3D content, greatly

benefitting from this feature.

𝑑-linear interpolation. Interpolating the queried hash table entries
ensures that the encoding enc(x;𝜃), and by the chain rule its com-

position with the neural network𝑚(enc(x;𝜃);Φ), are continuous.
Without interpolation, grid-aligned discontinuities would be present

in the network output, which would result in an undesirable blocky

appearance. One may desire higher-order smoothness, for exam-

ple when approximating partial differential equations. A concrete

example from computer graphics are signed distance functions, in

which case the gradient 𝜕𝑚(enc(x;𝜃);Φ)/𝜕x, i.e. the surface normal,

would ideally also be continuous. If higher-order smoothness must

be guaranteed, we describe a low-cost approach in Appendix A,

which we however do not employ in any of our results due to a

small decrease in reconstruction quality.

4 IMPLEMENTATION

To demonstrate the speed of the multiresolution hash encoding, we

implemented it in CUDA and integrated it with the fast fully-fused

MLPs of the tiny-cuda-nn framework [Müller 2021].
1
We release the

source code of the multiresolution hash encoding as an update to

Müller [2021] and the source code pertaining to the neural graphics

primitives at https://github.com/nvlabs/instant-ngp.

Performance considerations. In order to optimize inference and

backpropagation performance, we store hash table entries at half

precision (2 bytes per entry). We additionally maintain a master

copy of the parameters in full precision for stable mixed-precision

parameter updates, following Micikevicius et al. [2018].

To optimally use the GPU’s caches, we evaluate the hash tables

level by level: when processing a batch of input positions, we sched-

ule the computation to look up the first level of the multiresolution

hash encoding for all inputs, followed by the second level for all

inputs, and so on. Thus, only a small number of consecutive hash

tables have to reside in caches at any given time, depending on how

much parallelism is available on the GPU. Importantly, this struc-

ture of computation automatically makes good use of the available

caches and parallelism for a wide range of hash table sizes 𝑇 .

On our hardware, the performance of the encoding remains

roughly constant as long as the hash table size stays below 𝑇 ≤ 2
19
.

Beyond this threshold, performance starts to drop significantly; see

Figure 4. This is explained by the 6MB L2 cache of our NVIDIA

RTX 3090 GPU, which becomes too small for individual levels when

2 ·𝑇 · 𝐹 > 6 · 220, with 2 being the size of a half-precision entry.

1
We observe speed-ups on the order of 10× compared to a naïve Python implementation.

We therefore also release PyTorch bindings around our hash encoding and fully fused

MLPs to permit their use in existing projects with little overhead.

The optimal number of feature dimensions 𝐹 per lookup depends

on the GPU architecture. On one hand, a small number favors cache

locality in the previously mentioned streaming approach, but on

the other hand, a large 𝐹 favors memory coherence by allowing for

𝐹 -wide vector load instructions. 𝐹 = 2 gave us the best cost-quality

trade-off (see Figure 5) and we use it in all experiments.

Architecture. In all tasks, except for NeRF which we will describe

later, we use an MLP with two hidden layers that have a width

of 64 neurons, rectified linear unit (ReLU) activation functions on

their hidden layers, and a linear output layer. The maximum resolu-

tion 𝑁max is set to 2048× scene size for NeRF and signed distance

functions, to half of the gigapixel image width, and 2
19

in radiance

caching (large value to support close-by objects in expansive scenes).

Initialization. We initialize neural network weights according

to Glorot and Bengio [2010] to provide a reasonable scaling of ac-

tivations and their gradients throughout the layers of the neural

network. We initialize the hash table entries using the uniform dis-

tributionU(−10−4, 10−4) to provide a small amount of randomness

while encouraging initial predictions close to zero. We also tried a

variety of different distributions, including zero-initialization, which

all resulted in a very slightly worse initial convergence speed. The

hash table appears to be robust to the initialization scheme.

Training. We jointly train the neural network weights and the

hash table entries by applying Adam [Kingma and Ba 2014], where

we set 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10
−15

, The choice of 𝛽1 and 𝛽2 makes

only a small difference, but the small value of 𝜖 = 10
−15

can signifi-

cantly accelerate the convergence of the hash table entries when

their gradients are sparse andweak. To prevent divergence after long

training periods, we apply a weak L2 regularization (factor 10
−6
) to

the neural network weights, but not to the hash table entries.

When fitting gigapixel images or NeRFs, we use the L2
loss. For

signed distance functions, we use the mean absolute percentage

error (MAPE), defined as
|prediction− target |

|target | + 0.01 , and for neural radiance

caching we use a luminance-relative L2
loss [Müller et al. 2021].

We observed fastest convergence with a learning rate of 10
−4

for

signed distance functions and 10
−2

otherwise, as well a a batch size

of 2
14

for neural radiance caching and 2
18

otherwise.

Lastly, we skip Adam steps for hash table entries whose gradient is

exactly 0. This saves ∼10% performance when gradients are sparse,

which is a common occurrence with 𝑇 ≫ BatchSize. Even though

this heuristic violates some of the assumptions behind Adam, we

observe no degradation in convergence.

Non-spatial input dimensions 𝜉 ∈ R𝐸 . The multiresolution hash

encoding targets spatial coordinates with relatively low dimension-

ality. All our experiments operate either in 2D or 3D. However, it

is frequently useful to input auxiliary dimensions 𝜉 ∈ R𝐸 to the

neural network, such as the view direction and material parameters

when learning a light field. In such cases, the auxiliary dimensions

can be encoded with established techniques whose cost does not

scale superlinearly with dimensionality; we use the one-blob encod-

ing [Müller et al. 2019] in neural radiance caching [Müller et al. 2021]

and the spherical harmonics basis in NeRF, similar to concurrent

work [Verbin et al. 2021; Yu et al. 2021a].

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

https://github.com/nvlabs/instant-ngp

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:7

Hash table size:𝑇 = 2
22 𝑇 = 2

22 𝑇 = 2
12 𝑇 = 2

17 𝑇 = 2
22

Reference

Fig. 6. Approximating an RGB image of resolution 20 000 × 23 466 (469M RGB pixels) with our multiresolution hash encoding. With hash table sizes𝑇 of 2
12
,

2
17
, and 2

22
the models shown have 117 k, 2.7M, and 47.5M trainable parameters respectively. With only 3.4% of the degrees of freedom of the input, the last

model achieves a reconstruction PSNR of 29.8 dB. “Girl With a Pearl Earring” renovation ©Koorosh Orooj (CC BY-SA 4.0)

5 EXPERIMENTS

To highlight the versatility and high quality of the encoding, we com-

pare it with previous encodings in four distinct computer graphics

primitives that benefit from encoding spatial coordinates.

5.1 Gigapixel Image Approximation

Learning the 2D to RGB mapping of image coordinates to colors

has become a popular benchmark for testing a model’s ability to

represent high-frequency detail [Martel et al. 2021; Müller et al.

2019; Sitzmann et al. 2020; Tancik et al. 2020]. Recent breakthroughs

in adaptive coordinate networks (ACORN) [Martel et al. 2021] have

shown impressive results when fitting very large images—up to a bil-

lion pixels—with high fidelity at even the smallest scales. We target

our multiresolution hash encoding at the same task and converge

to high-fidelity images in seconds to minutes (Figure 4).

For comparison, on the Tokyo panorama from Figure 1, ACORN

achieves a PSNR of 38.59 dB after 36.9 h of training. With a similar

number of parameters (𝑇 = 2
24
), our method achieves the same

PSNR after 2.5 minutes of training, peaking at 41.9 dB after 4min.

Figure 6 showcases the level of detail contained in our model for a

variety of hash table sizes 𝑇 on another image.

It is difficult to directly compare the performance of our encoding

to ACORN; a factor of ∼10 stems from our use of fully fused CUDA

kernels, provided by the tiny-cuda-nn framework [Müller 2021].

The input encoding allows for the use of a much smaller MLP than

with ACORN, which accounts for much of the remaining 10×–100×
speedup. That said, we believe that the biggest value-add of the

multiresolution hash encoding is its simplicity. ACORN relies on an

adaptive subdivision of the scene as part of a learning curriculum,

none of which is necessary with our encoding.

5.2 Signed Distance Functions

Signed distance functions (SDFs), in which a 3D shape is repre-

sented as the zero level-set of a function of position x, are used in

many applications including simulation, path planning, 3D mod-

eling, and video games. DeepSDF [Park et al. 2019] uses a large

MLP to represent one or more SDFs at a time. In contrast, when just

a single SDF needs to be fit, a spatially learned encoding, such as

ours can be employed and the MLP shrunk significantly. This is the

application we investigate in this section. As baseline, we compare

with NGLOD [Takikawa et al. 2021], which achieves state-of-the-art

results in both quality and speed by prefixing its small MLP with a

lookup from an octree of trainable feature vectors. Lookups along

the hierarchy of this octree act similarly to our multiresolution cas-

cade of grids: they are a collision-free analog to our technique, with

a fixed growth factor 𝑏 = 2. To allow meaningful comparisons in

terms of both performance and quality, we implemented an opti-

mized version of NGLOD in our framework, details of which we

describe in Appendix B. Details pertaining to real-time training of

SDFs are described in Appendix C.

In Figure 7, we compare NGLOD with our multiresolution hash

encoding at roughly equal parameter count. We also show a straight-

forward application of the frequency encoding [Mildenhall et al.

2020] to provide a baseline, details of which are found in Appen-

dix D. By using a data structure tailored to the reference shape,

NGLOD achieves the highest visual reconstruction quality. How-

ever, even without such a dedicated data structure, our encoding

approaches a similar fidelity to NGLOD in terms of the intersection-

over-unionmetric (IoU
2
) with similar performance andmemory cost.

Furthermore, the SDF is defined ev-

erywhere within the training volume,

as opposed to NGLOD, which is only

defined within the octree (i.e. close

to the surface). This permits the use

of certain SDF rendering techniques

such as approximate soft shadows

from a small number of off-surface

distance samples [Evans 2006], as

shown in the adjacent figure.

To emphasize differences between the compared methods, we

visualize the SDF using a shading model. The resulting colors are

sensitive to even slight changes in the surface normal, which empha-

sizes small fluctuations in the prediction more strongly than in other

graphics primitives where color is predicted directly. This sensitivity

reveals undesired microstructure in our hash encoding on the scale

2
IoU is the ratio of volumes of the interiors of the intersection and union of the pair

of shapes being compared. IoU is always ≤ 1 with a perfect fit corresponding to = 1.

We measure IoU by comparing the signs of the SDFs at 128 million points uniformly

distributed within the bounding box of the scene.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

http://profoundism.com/free_licenses.html

102:8 • Müller et al.

Hash (ours) NGLOD Hash (ours) Frequency Frequency Hash (ours) NGLOD Hash (ours)

22.3M (params) 12.2M 124.9 k 124.9 k 12.2M 16.0M
1:56 (mm:ss) 1:14 1:32 2:10 1:54 1:49

0.9777 (IoU) 0.9812 0.8432 0.9898 0.9997 0.9998

11.1M (params) 12.2M 124.9 k 124.9 k 12.2M 24.2M
1:37 (mm:ss) 1:19 1:35 1:21 1:04 1:50

0.9911 (IoU) 0.9872 0.8470 0.7575 0.9691 0.9749

Fig. 7. Neural signed distance functions trained for 11 000 steps. The frequency encoding [Mildenhall et al. 2020] struggles to capture the sharp details on

these intricate models. NGLOD [Takikawa et al. 2021] achieves the highest visual quality, at the cost of only training the SDF inside the cells of a close-fitting

octree. Our hash encoding exhibits similar numeric quality in terms of intersection over union (IoU) and can be evaluated anywhere in the scene. However, it

also exhibits visually undesirable surface roughness that we attribute to randomly distributed hash collisions. Bearded Man ©Oliver Laric (CC BY-NC-SA 2.0)

Feature buffers

𝑚
(
enc(𝑥 ;𝜃) ;Φ

)
Predicted color

Online

supervised

training

Real-time sparse path tracer

Fig. 8. Summary of the neural radiance caching application [Müller et al. 2021]. The MLP𝑚
(
enc(𝑥 ;𝜃) ;Φ

)
is tasked with predicting photorealistic pixel colors

from feature buffers independently for each pixel. The feature buffers contain, among other variables, the world-space position x, which we propose to encode

with our method. Neural radiance caching is a challenging application, because it is supervised online during real-time rendering. The training data are a sparse
set of light paths that are continually spawned from the camera view. As such, the neural network and encoding do not learn a general mapping from features

to color, but rather they continually overfit to the current shape and lighting. To support animated content, training has a budget of one millisecond per frame.

Multiresolution hash encoding (Ours),𝑇 = 15, 133 FPS Triangle wave encoding [Müller et al. 2021], 147 FPS

Far view Medium view Close-by view Far view Medium view Close-by view

Fig. 9. Neural radiance caching [Müller et al. 2021] gains much improved quality from the multiresolution hash encoding with only a mild performance

penalty: 133 versus 147 frames per second at a resolution of 1920×1080px. To demonstrate the online adaptivity of the multiple hash resolutions vs. the prior

triangle wave encoding, we show screenshots from a smooth camera motion that starts with a far-away view of the scene (left) and zooms onto a close-by

view of an intricate shadow (right). Throughout the camera motion, which takes just a few seconds, the neural radiance cache continually learns from sparse

camera paths, enabling the cache to learn (“overfit”) intricate detail at the scale of the content that the camera is momentarily observing.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

https://creativecommons.org/licenses/by-nc-sa/2.0/

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:9

200 300 400 500 600 700

35.5

36

36.5

𝑁neurons = 16

𝑁neurons = 32

𝑁neurons = 64

𝑁neurons = 128 𝑁neurons = 256

Training time (seconds)

P
S
N
R
(
d
B
)

Neural Radiance Field: Lego

𝑁
layers

= 1

𝑁
layers

= 2

𝑁
layers

= 3

Fig. 10. The effect of the MLP size on test error vs. training time (31 000

training steps) on the Lego scene. Other scenes behave almost identically.

Each curve represents a different MLP depth, where the color MLP has

𝑁
layers

hidden layers and the density MLP has 1 hidden layer; we do not

observe an improvement with deeper density MLPs. The curves sweep the

number of neurons the hidden layers of the density and color MLPs from 16

to 256. Informed by this analysis, we choose 𝑁
layers

= 2 and 𝑁neurons = 64.

of the finest grid resolution, which is absent in NGLOD and does

not disappear with longer training times. Since NGLOD is essen-

tially a collision-free analog to our hash encoding, we attribute this

artifact to hash collisions. Upon close inspection, similar microstruc-

ture can be seen in other neural graphics primitives, although with

significantly lower magnitude.

5.3 Neural Radiance Caching

In neural radiance caching [Müller et al. 2021], the task of the MLP

is to predict photorealistic pixel colors from feature buffers; see Fig-

ure 8. The MLP is run independently for each pixel (i.e. the model is

not convolutional), so the feature buffers can be treated as per-pixel

feature vectors that contain the 3D coordinate x as well as addi-

tional features. We can therefore directly apply our multiresolution

hash encoding to x while treating all additional features as auxiliary
encoded dimensions 𝜉 to be concatenated with the encoded position,

using the same encoding as Müller et al. [2021]. We integrated our

work into Müller et al.’s implementation of neural radiance caching

and therefore refer to their paper for implementation details.

For photorealistic rendering, the neural radiance cache is typ-

ically queried only for indirect path contributions, which masks

its reconstruction error behind the first reflection. In contrast, we

would like to emphasize the neural radiance cache’s error, and thus

the improvement that can be obtained by using our multiresolution

hash encoding, so we directly visualize the neural radiance cache at

the first path vertex.

Figure 9 shows that—compared to the triangle wave encoding of

Müller et al. [2021]—our encoding results in sharper reconstruction

while incurring only a mild performance overhead of 0.7ms that

reduces the frame rate from 147 to 133 FPS at a resolution of 1920×
1080px. Notably, the neural radiance cache is trained online—during

rendering—from a path tracer that runs in the background, which

means that the 0.7ms overhead includes both training and runtime

costs of our encoding.

5.4 Neural Radiance and Density Fields (NeRF)

In the NeRF setting, a volumetric shape is represented in terms of a

spatial (3D) density function and a spatiodirectional (5D) emission

Ours (MLP) Linear MLP Reference

Fig. 11. Feeding the result of our encoding through a linear transformation

(no neural network) versus an MLP when learning a NeRF. The models

were trained for 1 min. The MLP allows for resolving specular details and

reduces the amount of background noise caused by hash collisions. Due to

the small size and efficient implementation of the MLP, it is only 15% more

expensive—well worth the significantly improved quality.

function, which we represent by a similar neural network architec-

ture as Mildenhall et al. [2020]. We train the model in the same ways

as Mildenhall et al.: by backpropagating through a differentiable ray

marcher driven by 2D RGB images from known camera poses.

Model Architecture. Unlike the other three applications, our NeRF
model consists of two concatenated MLPs: a density MLP followed

by a color MLP [Mildenhall et al. 2020]. The density MLP maps

the hash encoded position y = enc(x;𝜃) to 16 output values, the

first of which we treat as log-space density. The color MLP adds

view-dependent color variation. Its input is the concatenation of

• the 16 output values of the density MLP, and

• the view direction projected onto the first 16 coefficients of the

spherical harmonics basis (i.e. up to degree 4). This is a natural

frequency encoding over unit vectors.

Its output is an RGB color triplet, for which we use either a sigmoid

activation when the training data has low dynamic-range (sRGB) or

an exponential activation when it has high dynamic range (linear

HDR). We prefer HDR training data due to the closer resemblance

to physical light transport. This brings numerous advantages as has

also been noted in concurrent work [Mildenhall et al. 2021].

Informed by the analysis in Figure 10, our results were generated

with a 1-hidden-layer density MLP and a 2-hidden-layer color MLP,

both 64 neurons wide.

Accelerated ray marching. When marching along rays for both

training and rendering, we would like to place samples such that

they contribute somewhat uniformly to the image, minimizing

wasted computation. Thus, we concentrate samples near surfaces by

maintaining an occupancy grid that coarsely marks empty vs. non-

empty space. In large scenes, we additionally cascade the occupancy

grid and distribute samples exponentially rather than uniformly

along the ray. Appendix E describes these procedures in detail.

At HD resolutions, synthetic and even real-world scenes can be

trained in seconds and rendered at 60 FPS, without the need of

caching of the MLP outputs [Garbin et al. 2021; Wizadwongsa et al.

2021; Yu et al. 2021b]. This high performance makes it tractable to

add effects such as anti-aliasing, motion blur and depth of field by

brute-force tracing of multiple rays per pixel, as shown in Figure 12.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

102:10 • Müller et al.

Table 2. Peak signal to noise ratio (PSNR) of our NeRF implementation with multiresolution hash encoding (“Ours: Hash”) vs. NeRF [Mildenhall et al. 2020],

mip-NeRF [Barron et al. 2021a], and NSVF [Liu et al. 2020], which require ∼hours to train (values taken from the respective papers). To demonstrate the

comparatively rapid training of our method, we list its results after training for 1 s to 5min. For each scene, we mark the methods with least error using gold ,

silver , and bronze medals. To analyze the degree to which our speedup originates from our optimized implementation vs. from our hash encoding, we also

report PSNR for a nearly identical version of our implementation, in which the hash encoding has been replaced by the frequency encoding and the MLP

correspondingly enlarged to match Mildenhall et al. [2020] (“Ours: Frequency”; details in Appendix D). It approaches NeRF’s quality after training for just

∼5min, yet is outperformed by our full method after training for 5 s–15 s, amounting to a 20–60× improvement that can be attributed to the hash encoding.

Mic Ficus Chair Hotdog Materials Drums Ship Lego avg.

Ours: Hash (1 s) 26.09 21.30 21.55 21.63 22.07 17.76 20.38 18.83 21.202

Ours: Hash (5 s) 32.60 30.35 30.77 33.42 26.60 23.84 26.38 30.13 29.261

Ours: Hash (15 s) 34.76 32.26 32.95 35.56 28.25 25.23 28.56 33.68 31.407

Ours: Hash (1min) 35.92 33.05 34.34 36.78 29.33 25.82 30.20 35.63 32.635

Ours: Hash (5min) 36.22 33.51 35.00 37.40 29.78 26.02 31.10 36.39 33.176

mip-NeRF (∼hours) 36.51 33.29 35.14 37.48 30.71 25.48 30.41 35.70 33.090

NSVF (∼hours) 34.27 31.23 33.19 37.14 32.68 25.18 27.93 32.29 31.739

NeRF (∼hours) 32.91 30.13 33.00 36.18 29.62 25.01 28.65 32.54 31.005

Ours: Frequency (5min) 31.89 28.74 31.02 34.86 28.93 24.18 28.06 32.77 30.056

Ours: Frequency (1min) 26.62 24.72 28.51 32.61 26.36 21.33 24.32 28.88 26.669

Fig. 12. NeRF reconstruction of a modular synthesizer and large natural

360 scene. The left image took 5 seconds to accumulate 128 samples at 1080p

on a single RTX 3090 GPU, allowing for brute force defocus effects. The

right image was taken from an interactive session running at 10 frames per

second on the same GPU.

Comparison with direct voxel lookups. Figure 11 shows an ablation

where we replace the entire neural network with a single linear

matrix multiplication, in the spirit of (although not identical to)

concurrent direct voxel-based NeRF [Sun et al. 2021; Yu et al. 2021a].

While the linear layer is capable of reproducing view-dependent

effects, the quality is significantly compromised as compared to the

MLP, which is better able to capture specular effects and to resolve

hash collisions across the interpolated multiresolution hash tables

(which manifest as high-frequency artifacts). Fortunately, the MLP

is only 15% more expensive than the linear layer, thanks to its small

size and efficient implementation.

Comparison with high-quality offline NeRF. In Table 2, we compare

the peak signal to noise ratio (PSNR) our NeRF implementation

with multiresolution hash encoding (“Ours: Hash”) with that of

NeRF [Mildenhall et al. 2020], mip-NeRF [Barron et al. 2021a], and

NSVF [Liu et al. 2020], which all require on the order of hours to

train. In contrast, we list results of our method after training for

1 s to 5min. Our PSNR is competitive with NeRF and NSVF after

just 15 s of training, and competitive with mip-NeRF after 1min to

5min of training.

On one hand, our method performs best on scenes with high

geometric detail, such as Ficus, Drums, Ship and Lego, achieving the

best PSNR of all methods. On the other hand, mip-NeRF and NSVF

outperform our method on scenes with complex, view-dependent

reflections, such as Materials; we attribute this to the much smaller

MLP that we necessarily employ to obtain our speedup of several

orders of magnitude over these competing implementations.

Next, we analyze the degree to which our speedup originates

from our efficient implementation versus from our encoding. To

this end, we additionally report PSNR for a nearly identical ver-

sion of our implementation: we replace the hash encoding by the

frequency encoding and enlarge the MLP to approximately match

the architecture of Mildenhall et al. [2020] (“Ours: Frequency”); see

Appendix D for details. This version of our algorithm approaches

NeRF’s quality after training for just ∼5min, yet is outperformed by

our full method after training for a much shorter duration (5 s–15 s),

amounting to a 20–60× improvement caused by the hash encoding

and smaller MLP.

For “Ours: Hash”, the cost of each training step is roughly constant

at ∼6ms per step. This amounts to 50 k steps after 5min at which

point the model is well converged. We decay the learning rate after

20 k steps by a factor of 0.33, which we repeat every further 10 k

steps. In contrast, the larger MLP used in “Ours: Frequency” requires

∼30ms per training step, meaning that the PSNR listed after 5min

corresponds to about 10 k steps. It could thus keep improving slightly

if trained for extended periods of time, as in the offline NeRF variants

that are often trained for several 100 k steps.

While we isolated the performance and convergence impact of

our hash encoding and its small MLP, we believe an additional study

is required to quantify the impact of advanced raymarching schemes

(such as ours, coarse-fine [Mildenhall et al. 2020], or DONeRF [Neff

et al. 2021]) independently from the encoding and network archi-

tecture. We report additional information in Section E.3 to aid in

such an analysis.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:11

(a) Offline rendered reference (b) Hash (ours), trained for 10 s (c) Path tracer

Rendered in 32ms (2 samples per pixel) Rendered in 32ms (16 samples per pixel)

Fig. 13. Preliminary results of training a NeRF cloud model (b) from real-time path tracing data. Within 32ms, a 1024×1024 image of our model convincingly

approximates the offline rendered ground truth (a). Our model exhibits less noise than a GPU path tracer that ran for an equal amount of time (c). The cloud
data is ©Walt Disney Animation Studios (CC BY-SA 3.0)

6 DISCUSSION AND FUTURE WORK

Concatenation vs. reduction. At the end of the encoding, we con-
catenate rather than reduce (for example, by summing) the 𝐹 -di-

mensional feature vectors obtained from each resolution. We prefer

concatenation for two reasons. First, it allows for independent, fully

parallel processing of each resolution. Second, a reduction of the

dimensionality of the encoded result y from 𝐿𝐹 to 𝐹 may be too

small to encode useful information. While 𝐹 could be increased

proportionally, it would make the encoding much more expensive.

However, we recognize that there may be applications in which

reduction is favorable, such as when the neural network is signifi-

cantly more expensive than the encoding, in which case the added

computational cost of increasing 𝐹 could be insignificant. We thus

argue for concatenation by default and not as a hard-and-fast rule. In
our applications, concatenation, coupled with 𝐹 = 2 always yielded

by far the best results.

Choice of hash function. A good hash function is efficient to com-

pute, leads to coherent look-ups, and uniformly covers the feature

vector array regardless of the structure of query points. We chose

our hash function for its good mixture of these properties and also

experimented with three others:

(1) The PCG32 [O’Neill 2014] RNG, which has superior statisti-

cal properties. Unfortunately, it did not yield a higher-quality

reconstruction, making its higher cost not worthwhile.

(2) Ordering the least significant bits of Z𝑑 by a space-filling curve

and only hashing the higher bits. This leads to better look-up

coherence at the cost of worse reconstruction quality. However,

the speed-up is only marginally better than setting 𝜋1 := 1 as

done in our hash, and is thus not worth the reduced quality.

(3) Even better coherence can be achieved by treating the hash

function as a tiling of space into dense grids. Like (2), the speed-

up is small in practice with significant detriment to quality.

Alternatively to hand-crafted hash functions, it is conceivable to

optimize the hash function in future work, turning the method into

a dictionary-learning approach. Two possible avenues are (1) de-
veloping a continuous formulation of indexing that is amenable to

analytic differentiation or (2) applying an evolutionary optimization

algorithm that can efficiently explore the discrete function space.

Microstructure due to hash collisions. The salient artifact of our
encoding is a small amount of “grainy” microstructure, most visible

on the learned signed distance functions (Figure 1 and Figure 7).

The graininess is a result of hash collisions that the MLP is unable

to fully compensate for. We believe that the key to achieving state-

of-the-art quality on SDFs with our encoding will be to find a way

to overcome this microstructure, for example by filtering hash table

lookups or by imposing an additional smoothness prior on the loss.

Generative setting. Parametric input encodings, when used in

a generative setting, typically arrange their features in a dense

grid which can then be populated by a separate generator network,

typically a CNN such as StyleGAN [Chan et al. 2021; DeVries et al.

2021; Peng et al. 2020b]. Our hash encoding adds an additional layer

of complexity, as the features are not arranged in a regular pattern

through the input domain; that is, the features are not bijective with

a regular grid of points. We leave it to future work to determine

how best to overcome this difficulty.

Other applications. We are interested in applying the multireso-

lution hash encoding to other low-dimensional tasks that require

accurate, high-frequency fits. The frequency encoding originated

from the attention mechanism of transformer networks [Vaswani

et al. 2017]. We hope that parametric encodings such as ours can

lead to a meaningful improvement in general, attention-based tasks.

Heterogenous volumetric density fields, such as cloud and smoke

stored in a VDB [Museth 2013, 2021] data structure, often include

empty space on the outside, a solid core on the inside, and sparse

detail on the volumetric surface. This makes them a good fit for

our encoding. In the code released alongside this paper, we have

included a preliminary implementation that fits a radiance and

density field directly from the noisy output of a volumetric path

tracer. The initial results are promising, as shown in Figure 13, and

we intend to pursue this direction further in future work.

7 CONCLUSION

Many graphics problems rely on task specific data structures to

exploit the sparsity or smoothness of the problem at hand. Our

multi-resolution hash encoding provides a practical learning-based

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

http://creativecommons.org/licenses/by-sa/3.0/

102:12 • Müller et al.

alternative that automatically focuses on relevant detail, indepen-

dent of the task. Its low overhead allows it to be used even in time-

constrained settings like online training and inference. In the context

of neural network input encodings, it is a drop-in replacement, for

example speeding up NeRF by several orders of magnitude and

matching the performance of concurrent non-neural 3D reconstruc-

tion techniques.

Slow computational processes in any setting, from lightmap bak-

ing to the training of neural networks, can lead to frustrating work-

flows due to long iteration times [Enderton and Wexler 2011]. We

have demonstrated that single-GPU training times measured in

seconds are within reach for many graphics applications, allowing

neural approaches to be applied where previously they may have

been discounted.

ACKNOWLEDGMENTS

We are grateful to Andrew Tao, Andrew Webb, Anjul Patney, David

Luebke, Fabrice Rousselle, Jacob Munkberg, James Lucas, Jonathan

Granskog, Jonathan Tremblay, Koki Nagano, Marco Salvi, Nikolaus

Binder, and Towaki Takikawa for profound discussions, proofread-

ing, feedback, and early testing. We also thank Arman Toorians and

Saurabh Jain for the factory robot dataset in Figure 12 (right).

REFERENCES

Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter Seidel, and Jan Kautz.

2007. Convolution Shadow Maps. In Rendering Techniques, Jan Kautz and Sumanta

Pattanaik (Eds.). The Eurographics Association. https://doi.org/10.2312/EGWR/

EGSR07/051-060

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021a. Mip-NeRF: A Multiscale Representation for

Anti-Aliasing Neural Radiance Fields. arXiv (2021). https://jonbarron.info/mipnerf/

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hed-

man. 2021b. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.

arXiv:2111.12077 (Nov. 2021).

Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Love-

grove, and Richard Newcombe. 2020. Deep Local Shapes: Learning Local SDF Priors

for Detailed 3D Reconstruction. In Computer Vision – ECCV 2020, Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International

Publishing, Cham, 608–625.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De

Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero

Karras, and Gordon Wetzstein. 2021. Efficient Geometry-aware 3D Generative

Adversarial Networks. arXiv:2112.07945 (2021). arXiv:2112.07945 [cs.CV]
Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. 2020. Implicit Functions in

Feature Space for 3D Shape Reconstruction and Completion. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE.

Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava, Graham W. Taylor, and

Joshua M. Susskind. 2021. Unconstrained Scene Generation with Locally Condi-

tioned Radiance Fields. arXiv (2021).

Eric Enderton and Daniel Wexler. 2011. The Workflow Scale. In Computer Graphics
International Workshop on VFX, Computer Animation, and Stereo Movies.

Alex Evans. 2006. Fast Approximations for Global Illumination on Dynamic Scenes. In

ACM SIGGRAPH 2006 Courses (Boston, Massachusetts) (SIGGRAPH ’06). Association
for Computing Machinery, New York, NY, USA, 153–171. https://doi.org/10.1145/

1185657.1185834

Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and

Julien Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS.

arXiv:2103.10380 (March 2021).

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.

2017. Convolutional Sequence to Sequence Learning. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia)

(ICML’17). JMLR.org, 1243—-1252.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the Difficulty of Training Deep

Feedforward Neural Networks. In Proc. 13th International Conference on Artificial
Intelligence and Statistics (Sardinia, Italy, May 13–15). JMLR.org, 249–256.

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural radiosity. ACM
Transactions on Graphics 40, 6 (Dec. 2021), 1—-11. https://doi.org/10.1145/3478513.

3480569

David Money Harris and Sarah L. Harris. 2013. 3.4.2 - State Encodings. In Digital
Design and Computer Architecture (second ed.). Morgan Kaufmann, Boston, 129–131.

https://doi.org/10.1016/B978-0-12-394424-5.00002-1

Jon Jansen and Louis Bavoil. 2010. Fourier Opacity Mapping. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington,

D.C.) (I3D ’10). Association for ComputingMachinery, New York, NY, USA, 165—-172.

https://doi.org/10.1145/1730804.1730831

Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,

and Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 (June 2014).
Derrick H. Lehmer. 1951. Mathematical Methods in Large-scale Computing Units. In

Proceedings of the Second Symposium on Large Scale Digital Computing Machinery.
Harvard University Press, Cambridge, United Kingdom, 141–146.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika

Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without

Clean Data. arXiv:1803.04189 (March 2018).

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.

Neural Sparse Voxel Fields. NeurIPS (2020). https://lingjie0206.github.io/papers/

NSVF/

Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,

and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural

Representation. ACM Trans. Graph. (SIGGRAPH) (2021).
Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and

Manmohan Chandraker. 2021. Modulated Periodic Activations for Generalizable

Local Functional Representations. In IEEE International Conference on Computer
Vision. IEEE.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David

Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and

Hao Wu. 2018. Mixed Precision Training. arXiv:1710.03740 (Oct. 2018).
Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, and

Jonathan T. Barron. 2021. NeRF in the Dark: High Dynamic Range View Synthesis

from Noisy Raw Images. arXiv:2111.13679 (Nov. 2021).
Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,

Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local Light Field Fusion:

Practical View Synthesis with Prescriptive Sampling Guidelines. ACM Trans. Graph.
38, 4, Article 29 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3322980

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.
Thomas Müller. 2021. Tiny CUDA Neural Network Framework.

https://github.com/nvlabs/tiny-cuda-nn.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct. 2019),
19 pages. https://doi.org/10.1145/3341156

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural

Control Variates. ACM Trans. Graph. 39, 6, Article 243 (Nov. 2020), 19 pages. https:

//doi.org/10.1145/3414685.3417804

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time

Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36 (Aug.
2021), 16 pages. https://doi.org/10.1145/3450626.3459812

Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.

ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. https://doi.org/10.1145/

2487228.2487235

Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For

Real-Time Rendering And Simulation. In ACM SIGGRAPH 2021 Talks (Virtual Event,
USA) (SIGGRAPH ’21). Association for Computing Machinery, New York, NY, USA,

Article 1, 2 pages. https://doi.org/10.1145/3450623.3464653

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller,

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, and Markus Steinberger.

2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance

Fields using Depth Oracle Networks. Computer Graphics Forum 40, 4 (2021).

https://doi.org/10.1111/cgf.14340

Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. 2013. Real-

Time 3D Reconstruction at Scale Using Voxel Hashing. ACM Trans. Graph. 32, 6,
Article 169 (nov 2013), 11 pages. https://doi.org/10.1145/2508363.2508374

Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models

Using Volumetric Techniques. IEEE Transactions on Visualization and Computer
Graphics 9, 2 (apr 2003), 191––205. https://doi.org/10.1109/TVCG.2003.1196006

Melissa E. O’Neill. 2014. PCG: A Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation. Technical Report HMC-CS-2014-0905.

Harvey Mudd College, Claremont, CA.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

https://doi.org/10.2312/EGWR/EGSR07/051-060
https://doi.org/10.2312/EGWR/EGSR07/051-060
https://jonbarron.info/mipnerf/
https://arxiv.org/abs/2112.07945
https://doi.org/10.1145/1185657.1185834
https://doi.org/10.1145/1185657.1185834
https://doi.org/10.1145/3478513.3480569
https://doi.org/10.1145/3478513.3480569
https://doi.org/10.1016/B978-0-12-394424-5.00002-1
https://doi.org/10.1145/1730804.1730831
https://lingjie0206.github.io/papers/NSVF/
https://lingjie0206.github.io/papers/NSVF/
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3414685.3417804
https://doi.org/10.1145/3414685.3417804
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1109/TVCG.2003.1196006

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:13

Representation. arXiv:1901.05103 (Jan. 2019).
Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.

2020a. Convolutional Occupancy Networks. In European Conference on Computer
Vision (ECCV).

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.

2020b. Convolutional Occupancy Networks. (2020). arXiv:2003.04618 [cs.CV]

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.) (3rd ed.). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA. 1266 pages.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and

Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation

Functions. In Proc. NeurIPS.
Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021. Direct Voxel Grid Optimization:

Super-fast Convergence for Radiance Fields Reconstruction. arXiv:2111.11215 (Nov.
2021).

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek

Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural

Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. (2021).

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin

Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.

2020. Fourier Features Let Networks Learn High Frequency Functions in Low

Dimensional Domains. NeurIPS (2020). https://bmild.github.io/fourfeat/index.html

Danhang Tang, Mingsong Dou, Peter Lincoln, Philip Davidson, Kaiwen Guo, Jonathan

Taylor, Sean Fanello, Cem Keskin, Adarsh Kowdle, Sofien Bouaziz, Shahram Izadi,

and Andrea Tagliasacchi. 2018. Real-Time Compression and Streaming of 4D Per-

formances. ACM Trans. Graph. 37, 6, Article 256 (dec 2018), 11 pages. https:

//doi.org/10.1145/3272127.3275096

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomeranets, and

Markus Gross. 2003. Optimized Spatial Hashing for Collision Detection of De-

formable Objects. In Proceedings of VMV’03, Munich, Germany. 47–54.
Sergios Theodoridis. 2008. Pattern Recognition. Elsevier.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need.

arXiv:1706.03762 (June 2017).
Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and

Pratul P. Srinivasan. 2021. Ref-NeRF: Structured View-Dependent Appearance for

Neural Radiance Fields. arXiv:2112.03907 (Dec. 2021).

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn

Suwajanakorn. 2021. NeX: Real-time View Synthesis with Neural Basis Expansion.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2021a. Plenoxels: Radiance Fields without Neural Networks.

arXiv:2112.05131 (Dec. 2021).
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021b.

PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.

A SMOOTH INTERPOLATION

One may desire smoother interpolation than the 𝑑-linear interpola-

tion that our multiresolution hash encoding uses by default.

In this case, the obvious solution would be using a 𝑑-quadratic or

𝑑-cubic interpolation, both of which are however very expensive

due to requiring the lookup of 3
𝑑
and 4

𝑑
instead of 2

𝑑
vertices,

respectively. As a low-cost alternative, we recommend applying the

smoothstep function,

𝑆1 (𝑥) = 𝑥2 (3 − 2𝑥) , (5)

to the 𝑑-linear interpolation weights. Crucially, the derivative of the

smoothstep,

𝑆 ′
1
(𝑥) = 6𝑥 (1 − 𝑥) , (6)

vanishes at 0 and at 1, causing the discontinuity in the derivatives

of the encoding to vanish by the chain rule. The encoding thus

becomes 𝐶1
-smooth.

However, by this trick, we have merely traded discontinuities for

zero-points in the individual levels which are not necessarily more

desirable. So, we offset each level by half of its voxel size 1/(2𝑁𝑙),
which prevents the zero derivatives from aligning across all levels.

The encoding is thus able to learn smooth, non-zero derivatives for

all spatial locations x.
For higher-order smoothness, higher-order smoothstep functions

𝑆𝑛 can be used at small additional cost. In practice, the computational

cost of the 1st order smoothstep function 𝑆1 is hidden by memory

bottlenecks, making it essentially free. However, the reconstruction

quality tends to decrease as higher-order interpolation is used. This

is why we do not use it by default. Future research is needed to

explain the loss of quality.

B IMPLEMENTATION DETAILS OF NGLOD

We designed our implementation of NGLOD [Takikawa et al. 2021]

such that it closely resembles that of our hash encoding, only dif-

fering in the underlying data structure; i.e. using the vertices of

an octree around ground-truth triangle mesh to store collision-free

feature vectors, rather than relying on hash tables. This results

in a notable difference to the original NGLOD: the looked-up fea-

ture vectors are concatenated rather than summed, which in our

implementation serendipitously resulted in higher reconstruction

quality compared to the summation of an equal number of trainable

parameters.

The octree implies a fixed growth factor 𝑏 = 2, which leads to

a smaller number of levels than our hash encoding. We obtained

the most favorable performance vs. quality trade-off at a roughly

equal number of trainable parameters as our method, through the

following configuration:

(1) the number of feature dimensions per entry is 𝐹 = 8,

(2) the number of levels is 𝐿 = 10, and

(3) look-ups start at level 𝑙 = 4.

The last point is important for two reasons: first, it matches the

coarsest resolution of our hash tables 2
4 = 16 = 𝑁min, and second, it

prevents a performance bottleneck that would arise when all threads

of the GPU atomically accumulate gradients in few, coarse entries.

We experimentally verified that this does not lead to reduced quality,

compared to looking up the entire hierarchy.

C REAL-TIME SDF TRAINING DATA GENERATION

In order to not bottleneck our SDF training, we must be able to

generate a large number of ground truth signed distances to high-

resolution meshes very quickly (∼millions per second).

C.1 Efficient Sampling of 3D Training Positions

Similar to prior work [Takikawa et al. 2021], we distribute some

(1/8th) of our training positions uniformly in the unit cube, some

(4/8ths) uniformly on the surface of the mesh, and the remainder

(3/8ths) perturbed from the surface of the mesh.

The uniform samples in the unit cube are trivial to generate using

any pseudorandom number generator; we use a GPU implementa-

tion of PCG32 [O’Neill 2014].

To generate the uniform samples on the surface of the mesh, we
compute the area of each triangle in a preprocessing step, normalize

the areas to represent a probability distribution, and store the corre-

sponding cumulative distribution function (CDF) in an array. Then,

for each sample, we select a triangle proportional to its area by the

inversion method—a binary search of a uniform random number

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

https://arxiv.org/abs/2003.04618
https://bmild.github.io/fourfeat/index.html
https://doi.org/10.1145/3272127.3275096
https://doi.org/10.1145/3272127.3275096

102:14 • Müller et al.

over the CDF array—and sample a uniformly random position on
that triangle by standard sample warping [Pharr et al. 2016].

Lastly, for those surface samples that must be perturbed, we add

a random 3D vector, each dimension independently drawn from

a logistic distribution (similar shape to a Gaussian, but cheaper to

compute) with standard deviation 𝑟/1024, where 𝑟 is the bounding
radius of the mesh.

Octree sampling for NGLOD. When training our implementation

of Takikawa et al. [2021], we must be careful to rarely generate

training positions outside of octree leaf nodes. To this end, we

replace the uniform unit cube sampling routine with one that creates

uniform 3D positions in the leaf nodes of the octree by first rejection

sampling a uniformly random leaf node from the array of all nodes

and then generating a uniform random position within the node’s

voxel. Fortunately, the standard deviation 𝑟/1024 of our logistic

perturbation is small enough to almost never leave the octree, so

we do not need to modify the surface sampling routine.

C.2 Efficient Signed Distances to the Triangle Mesh

For each sampled 3D position x, we must compute the signed dis-

tance to the triangle mesh. To this end, we first construct a triangle

bounding volume hierarchy (BVH) with which we perform efficient

unsigned distance queries; O
(
log𝑁

triangles

)
on average.

Next, we sign these distances by tracing 32 “stab rays” [Nooruddin
and Turk 2003], which we distribute uniformly over the sphere using

a Fibonacci lattice that is pseudorandomly and independently offset

for every training position. If any of these rays reaches infinity, the

corresponding position x is deemed “outside” of the object and the

distance is marked positive. Otherwise, it is marked negative.
3

For maximum efficiency, we use NVIDIA ray tracing hardware

through the OptiX 7 framework, which is over an order of magnitude

faster than using the previously mentioned triangle BVH for ray-

shape intersections on our RTX 3090 GPU.

D BASELINE MLPS WITH FREQUENCY ENCODING

In our signed distance function (SDF), neural radiance caching

(NRC), and neural radiance and density fields (NeRF) experiments,

we use an MLP prefixed by a frequency encoding as baseline. The

respective architectures are equal to those in the main text, except

that the MLPs are larger and that the hash encoding is replaced by

sine and cosine waves (SDF and NeRF) or triangle waves (NRC).

The following table lists the number of hidden layers, neurons per

hidden layer, frequency cascades (each scaled by a factor of 2 as per

Vaswani et al. [2017]), and adjusted learning rates.

Primitive Hidden layers Neurons Frequencies Learning rate

SDF 8 128 10 3 · 10−4
NRC 3 64 10 10

−2

NeRF 7 / 1 256 / 256 16 / 4 10
−3

For NeRF, the first listed number corresponds to the density MLP

3
If the mesh is watertight, it is cheaper to sign the distance based on the normal(s) of

the closest triangle(s) from the previous step. We also implemented this procedure, but

disable it by default due to its incompatibility with typical meshes in the wild.

and the second number to the color MLP. For SDFs, we make two ad-

ditional changes: (1) we optimize against the relative L2
loss [Lehti-

nen et al. 2018] instead of the MAPE described in the main text, and

(2) we perturb training samples with a standard deviation of 𝑟/128
as opposed to the value of 𝑟/1024 from Appendix C.1. Both changes

smooth the loss landscape, resulting in a better reconstruction with

the above configuration.

Notably, even though the above configurations have fewer param-

eters and are slower than our configurations with hash encoding,

they represent favorable performance vs. quality trade-offs. An equal

parameter count comparison would make pure MLPs too expensive

due to their scaling with O(𝑛2) as opposed to the sub-linear scaling

of trainable encodings. On the other hand, an equal throughput com-

parison would require prohibitively small MLPs, thus underselling

the reconstruction quality that pure MLPs are capable of.

We also experimented with Fourier features [Tancik et al. 2020]

but did not obtain better results compared to the axis-aligned fre-

quency encodings mentioned previously.

E ACCELERATED NERF RAY MARCHING

The performance of ray marching algorithms such as NeRF strongly

depends on the marching scheme. We utilize three techniques with

imperceivable error to optimize our implementation:

(1) exponential stepping for large scenes,

(2) skipping of empty space and occluded regions, and

(3) compaction of samples into dense buffers for efficient execution.

E.1 Ray Marching Step Size and Stopping

In synthetic NeRF scenes, which we bound to the unit cube [0, 1]3,
we use a fixed ray marching step size equal to Δ𝑡 :=

√
3/1024;

√
3

represents the diagonal of the unit cube.

In all other scenes, based on the intercept theorem
4
, we set the

step size proportional to the distance 𝑡 along the ray Δ𝑡 := 𝑡/256,
clamped to the interval

[√
3/1024, 𝑠 ·

√
3/1024

]
, where 𝑠 is size of

the largest axis of the scene’s bounding box. This choice of step

size exhibits exponential growth in 𝑡 , which means that the compu-

tation cost grows only logarithmically in scene diameter, with no

perceivable loss of quality.

Lastly, we stop raymarching and set the remaining contribution to

zero as soon as the transmittance of the ray drops below a threshold;

in our case 𝜖 = 10
−4
.

Related work. Mildenhall et al. [2019] already identified a non-

linear step size as benefitial: they recommend sampling uniformly

in the disparity-space of the average camera frame, which is more

aggressive than our exponential stepping, requiring on one hand

only a constant number of steps, but on the other hand can lead to a

loss of fidelity compared to exponential stepping [Neff et al. 2021].

In addition to non-linear stepping, some prior methods propose to

warp the 3D domain of the scene towards the origin, thereby improv-

ing the numerical properties of their input encodings [Barron et al.

2021b; Mildenhall et al. 2020; Neff et al. 2021]. This causes rays to

curve, which leads to a worse reconstruction in our implementation.

4
The appearance of objects stays the same as long as their size and distance from the

observer remain proportional.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding • 102:15

In contrast, we linearly map input coordinates into the unit cube

before feeding them to our hash encoding, relying on its exponential

multiresolution growth to reach a proportionally scaled maximum

resolution 𝑁max with a constant number of levels (variable 𝑏 as in

Equation (3)) or logarithmically many levels 𝐿 (constant 𝑏).

E.2 Occupancy Grids

To skip ray marching steps in empty space, we maintain a cascade

of 𝐾 multiscale occupancy grids, where 𝐾 = 1 for all synthetic NeRF

scenes (single grid) and𝐾 ∈ [1, 5] for larger real-world scenes (up to
5 grids, depending on scene size). Each grid has a resolution of 128

3
,

spanning a geometrically growing domain [−2𝑘−1 +0.5, 2𝑘−1 +0.5]3
that is centered around (0.5, 0.5, 0.5).
Each grid cell stores occupancy as a single bit. The cells are laid

out in Morton (z-curve) order to facilitate memory-coherent traver-

sal by a digital differential analyzer (DDA). During ray marching,

whenever a sample is to be placed according to the step size from

the previous section, the sample is skipped if its grid cell’s bit is low.

Which one of the 𝐾 grids is queried is determined by both the

sample position x and the step size Δ𝑡 : among the grids covering x,
the finest one with cell side-length larger than Δ𝑡 is queried.

Updating the occupancy grids. To continually update the occu-

pancy grids while training, we maintain a second set of grids that

have the same layout, except that they store full-precision floating

point density values rather than single bits.

We update the grids after every 16 training iterations by perform-

ing the following steps. We

(1) decay the density value in each grid cell by a factor of 0.95,

(2) randomly sample 𝑀 candidate cells, and set their value to the

maximum of their current value and the density component of

the NeRF model at a random location within the cell, and

(3) update the occupancy bits by thresholding each cell’s density

with 𝑡 = 0.01 · 1024/
√
3, which corresponds to thresholding the

opacity of aminimal raymarching step by 1 − exp(−0.01) ≈ 0.01.

The sampling strategy of the 𝑀 candidate cells depends on the

training progress since the occupancy grid does not store reliable

information in early iterations. During the first 256 training steps,

we sample𝑀 = 𝐾 · 1283 cells uniformly without repetition. For sub-

sequent training steps we set 𝑀 = 𝐾 · 1283/2 which we partition

into two sets. The first 𝑀/2 cells are sampled uniformly among

all cells. Rejection sampling is used for the remaining samples to

restrict selection to cells that are currently occupied.

Related work. The idea of constraining the MLP evaluation to

occupied cells has already been exploited in prior work on trainable,

cell-based encodings [Liu et al. 2020; Sun et al. 2021; Yu et al. 2021a,b].

In contrast to these papers, our occupancy grid is independent from

the learned encoding, allowing us to represent it more compactly

as a bitfield (and thereby at a resolution that is decoupled from that

of the encoding) and to utilize it when comparing against other

methods that do not have a trained spatial encoding, e.g. “Ours:

Frequency” in Table 2.

Empty space can also be skipped by importance sampling the

depth distribution, such as by resampling the result of a coarse

Table 3. Batch size, number of rays per batch, and number of samples per

ray for our full method (“Ours: Hash”), our implementation of frequency

encoding NeRF (“Ours: Freq.”) and mip-NeRF. Since the values correspond-

ing to our method vary by scene, we report minimum and maximum values

over the synthetic scenes from Table 2.

Method Batch size = Samples per ray × Rays per batch

Ours: Hash 256 Ki 3.1 to 25.7 10 Ki to 85 Ki

Ours: Freq. 256 Ki 2.5 to 9 29 Ki to 105 Ki

mip-NeRF 1Mi 128 coarse + 128 fine 4 Ki

prediction [Mildenhall et al. 2020] or through neural importance

sampling [Müller et al. 2019] as done in DONeRF [Neff et al. 2021].

E.3 Number of Rays Versus Batch Size

The batch size has a significant effect on the quality and speed of

NeRF convergence. We found that training from a larger number

of rays, i.e. incorporating more viewpoint variation into the batch,

converged to lower error in fewer steps. In our implementation

where the number of samples per ray is variable due to occupancy,

we therefore include as many rays as possible in batches of fixed size

rather than building variable-size batches from a fixed ray count.

In Table 3, we list ranges of the resulting number of rays per

batch and corresponding samples per ray. We use a batch size of

256 Ki, which resulted in the fastest wall-clock convergence in our

experiments. This is 4× smaller than the batch size chosen in mip-

NeRF, likely due to the larger number of samples each of their

rays requires. However, due to the myriad other differences across

implementations, a more detailed study must be carried out to draw

a definitive conclusion.

Lastly, we note that the occupancy grid in our frequency-encoding

baseline (“Ours: Freq.”; Appendix D) produces even fewer samples

than when used alongside our hash encoding. This can be explained

by the slightly more detailed reconstruction of the hash encoding:

when the extra detail is finer than the occupancy grid resolution,

its surrounding empty space can not be effectively culled away and

must be traversed by extra steps.

ACM Trans. Graph., Vol. 41, No. 4, Article 102. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Multiresolution Hash Encoding
	4 Implementation
	5 Experiments
	5.1 Gigapixel Image Approximation
	5.2 Signed Distance Functions
	5.3 Neural Radiance Caching
	5.4 Neural Radiance and Density Fields (NeRF)

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Smooth Interpolation
	B Implementation Details of NGLOD
	C Real-time SDF Training Data Generation
	C.1 Efficient Sampling of 3D Training Positions
	C.2 Efficient Signed Distances to the Triangle Mesh

	D Baseline MLPs with Frequency Encoding
	E Accelerated NeRF Ray Marching
	E.1 Ray Marching Step Size and Stopping
	E.2 Occupancy Grids
	E.3 Number of Rays Versus Batch Size

