Abstract
Sea spray aerosols impact Earth’s radiation balance by directly scattering solar radiation. They also act as cloud condensation nuclei, thereby altering cloud properties including reflectivity, lifetime and extent. The influence of sea spray aerosol on cloud properties is thought to be particularly strong over remote ocean regions devoid of continental particles. Yet the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer remains poorly understood. Here, using a lognormal-mode-fitting procedure, we isolate sea spray aerosols from measurements of particle size and abundance over the Pacific, Southern, Arctic and Atlantic oceans to determine the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer. On a global basis, with the exception of the high southern latitudes, sea spray aerosol makes a contribution of less than 30% to the cloud condensation nuclei population for air that is supersaturated at 0.1 to 1.0%—the supersaturation range typical of marine boundary layer clouds. Instead, the cloud condensation nuclei population between 70° S and 80° N is composed primarily of non-sea-salt sulfate aerosols, due to large-scale meteorological features that result in entrainment of particles from the free troposphere.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Warneck, P. Chemistry of the Natural Atmosphere (San Diego Academic, 1988).
McInnes, L. M., Quinn, P. K., Covert, D. S. & Anderson, T. L. Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmos. Environ. 30, 869–884 (1996).
Quinn, P. K. & Coffman, D. J. Local closure during ACE 1: aerosol mass concentration and scattering and backscattering coefficients. J. Geophys. Res. 103, 16575–16596 (1998).
Quinn, P. K. & Coffman, D. J. Comment on “Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results” by Tegen et al. J. Geophys. Res. 104, 4241–4248 (1999).
Jacobson, M. Z. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. 106, 1551–1568 (2001).
Takemura, T. et al. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 15, 333–352 (2002).
de Leeuw, G. et al. Production flux of sea spray aerosol. Rev. Geophys. 49, RG2001 (2011).
Ovadnevaite, J. et al. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14, 1837–1852 (2014).
Tsigaridis, K., Koch, D. & Menon, S. Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. 118, 220–235 (2013).
O’Dowd, C. D. et al. Biogenically driven organic contribution to marine aerosol. Nature 431, 676–680 (2004).
Leck, C. & Bigg, E. K. Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57, 305–316 (2005).
Keene, W. C. et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 112, D21202 (2007).
Facchini, M. C. et al. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42, 9116–9121 (2008).
Quinn, P. K. & Bates, T. S. The case against climate regulation via oceanic phytoplankton sulfur emissions. Nat. Geosci. 480, 51–56 (2011).
Campuzano-Jost, P. et al. Near real-time measurement of sea-salt aerosol during the SEAS Campaign: comparison of emission-based sodium detection with an aerosol volatility technique. J. Atmos. Ocean Tech. 20, 1421–1430 (2003).
Hobbs, P. V. Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean. Q. J. R. Meteorol. Soc. 97, 263–271 (1971).
McInnes, L. M., Covert, D. S. & Baker, B. The number of sea-salt, sulfate, and carbonaceous particles in the marine atmosphere: EM measurements consistent with the ambient size distribution. Tellus B 49, 300–313 (1997).
Murphy, D. M. et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392, 62–65 (1998).
Dinger, J. E., Howell, H. B. & Wojciechowski, T. A. On the source and composition of cloud nuclei in a subsident air mass over the North Atlantic. J. Atmos. Sci. 27, 791–797 (1970).
O’Dowd, C. D., Smith, M. H. & Jennings, S. G. Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic. J. Geophys. Res. 98, 1123–1135 (2003).
Modini, R. L. et al. Primary marine aerosol-cloud interactions off the coast of California. J. Geophys. Res. 120, 4282–4303 (2015).
Lewis, E. R. & Schwartz, S. E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models - A Critical Review (American Geophysical Union, 2004).
Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013).
Spiel, D. E. On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 103, 24907–24918 (1998).
Bikerman, J. J. Foams (Springer, 1973).
Feingold, G., Cotton, W. R., Kreidenweis, S. M. & Davis, J. T. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci. 56, 4100–4117 (1998).
Bates, T. S. et al. Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103, 16369–16383 (1998).
Covert, D. S., Kapustin, V. N., Bates, T. S. & Quinn, P. K. Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res. 101, 6919–6930 (1996).
Quinn, P. K., Kapustin, V. N., Bates, T. S. & Covert, D. S. Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res. 101, 6931–6951 (1996).
Clarke, A. et al. Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE-1. J. Geophys. Res. 103, 16397–16409 (1998).
Raes, F. Entrainment of free-tropospheric aerosol as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 100, 2893–2903 (1995).
Clarke, A. Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution. J. Geophys. Res. 98, 20633–20647 (1993).
Bigg, E. K., Leck, C. & Nilsson, E. D. Sudden changes in Arctic atmosphere aerosol concentrations during summer and autumn. Tellus B 48, 254–271 (1996).
Gras, J. L. Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations. Environ. Chem. 6, 515–523 (2009).
Gras, J. L., Jimi, S. I., Siems, S. T. & Krummel, P. B. Postfrontal nanoparticles at Cape Grim: observations. Environ. Chem. 6, 508–514 (2009).
Hegg, D. A., Covert, D. S. & Kapustin, V. N. Modeling a case of particle nucleation in the marine boundary layer. J. Geophys. Res. 97, 9851–9857 (1992).
Hoppel, W. A., Frick, G. M., Fitzgerald, J. W. & Larson, R. E. Marine boundary layer measurements of new particle formation and the effect which nonprecipitating clouds have on the aerosol size distribution. J. Geophys. Res. 99, 14443–14459 (1994).
Frossard, A. A. et al. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. J. Geophys. Res. 116, D05205 (2011).
Tunved, P., Strom, J. & Krejci, R. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660 (2013).
Leaitch, W. R. et al. Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elem. Sci. Anth. 1, 17 (2013).
Fitzgerald, J. W. Measurement of the relationship between the dry size and critical supersaturation of natural aerosol particles. J. Appl. Meteorol. 14, 1044–1049 (1975).
Hoppel, W. A., Frick, G. M. & Fitzgerald, J. W. Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements. J. Geophys. Res. 101, 26553–26565 (1996).
Leaitch, W. R. et al. Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: factors controlling cloud droplet number concentrations. J. Geophys. Res. 101, 29123–29135 (1996).
Hudson, J. G. et al. Cloud condensation nuclei and ship tracks. J. Atmos. Sci. 57, 2696–2706 (2000).
Roberts, G., Mauger, G., Hadley, O. & Ramanathan, V. North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei. J. Geophys. Res. 111, D13205 (2006).
Hudson, J. G., Noble, S. & Jha, V. Stratus cloud supersaturations. Geophys. Res. Lett. 37, L21813 (2010).
Covert, D. S., Kapustin, V. N., Quinn, P. K. & Bates, T. S. New particle formation in the marine boundary layer. J. Geophys. Res. 97, 20581–20589 (1992).
Hoffmann, E. H. et al. An advanced modeling study on the impacts and atmospheric implications of multi-phase dimethyl sulfide chemistry. Proc. Natl Acad. Sci. USA 113, 11776–11781 (2016).
Calhoun, J. A., Bates, T. S. & Charlson, R. J. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 18, 1877–1880 (1991).
Norman, A. et al. Sources of aerosol sulphate at Alert: apportionment using stable isotopes. J. Geophys. Res. 104, 11619–11631 (1999).
Burrows, S. M., Hoose, C., Poschl, U. & Lawrence, M. G. Ice nuclei in marine air: biogenic particles or dust? Atmos. Chem. Phys. 13, 245–267 (2013).
Bates, T. S., Coffman, D. J., Covert, D. S. & Quinn, P. K. Regional marine boundary layer aerosol size distributions in the Indian, Atlantic and Pacific Oceans: a comparison of INDOEX measurements with ACE-1 and ACE-2, and Aerosols99. J. Geophys. Res. 107, 8026 (2002).
Quinn, P. K. et al. Aerosol optical properties in the marine boundary layer during the first Aerosol Characterization Experiment (ACE-1) and the underlying chemical and physical aerosol properties. J. Geophys. Res. 103, 16547–16563 (1998).
Russell, L. M. et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl Acad. Sci. USA 107, 6652–6657 (2010).
Quinn, P. K. et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 7, 228–232 (2014).
Berner, A. et al. The size distribution of the urban aerosol in Vienna. Sci. Tot. Environ. 13, 245–261 (1979).
Holland, J. D. The Chemistry of the Atmosphere and Oceans (John Wiley, 1978).
Turpin, B. J. & Lim, H.-J. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Tech. 35, 602–610 (2001).
Winklmeyer, W., Reischl, G. P., Lindner, A. O. & Berner, A. New electromobility spectrometer for the measurement of aerosol size distributions in the size range 1 to 1000 nm. J. Aerosol Sci. 22, 289–296 (1991).
Bates, T. S. et al. Marine boundary layer dust and pollution transport associated with the passage of a frontal system over eastern Asia. J. Geophys. Res. 109, D19S19 (2004).
Stratmann, F. & Wiedensohler, A. A new data inversion algorithm for DMPS measurements. J. Aerosol Sci. 27, 339–340 (1997).
Lance, S., Medina, J., Smith, J. N. & Nenes, A. Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci. Tech. 40, 242–254 (2006).
Roberts, G. & Nenes, A. A continuous-flow streamwise thermal gradient CCN chamber for atmospheric measurements. Aerosol Sci. Tech. 39, 206–221 (2005).
Whittlestone, S. & Zahorowski, W. Baseline radon detectors for shipboard use: development and deployment in the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res. 103, 16743–16751 (1998).
Rose, D. et al. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 8, 1153–1179 (2008).
Acknowledgements
This work was supported in part by the NOAA Climate Program Office. We thank the captain and crew of all of the NOAA and UNOLS vessels that contributed to this work. This is PMEL contribution number 4622.
Author information
Authors and Affiliations
Contributions
All authors contributed extensively to the work presented in this paper. P.K.Q. and T.S.B. designed and performed the experiments, analysed data and wrote the paper. D.J.C. and J.E.J. performed the experiments and analysed data. L.M.U. analysed data.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2483 kb)
Rights and permissions
About this article
Cite this article
Quinn, P., Coffman, D., Johnson, J. et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geosci 10, 674–679 (2017). https://doi.org/10.1038/ngeo3003
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo3003
This article is cited by
-
Underestimated role of sea surface temperature in sea spray aerosol formation and climate effects
npj Climate and Atmospheric Science (2024)
-
Wet deposition in shallow convection over the Southern Ocean
npj Climate and Atmospheric Science (2024)
-
Application of a new multi-elevation method for determining the elemental composition of atmospheric precipitation in coastal marine zones
Environmental Geochemistry and Health (2024)
-
Optical Modeling of Sea Salt Aerosols Using in situ Measured Size Distributions and the Impact of Larger Size Particles
Advances in Atmospheric Sciences (2024)
-
Arctic warming by abundant fine sea salt aerosols from blowing snow
Nature Geoscience (2023)