Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum sensors for biomedical applications

Abstract

Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen–vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.

Key points

  • Quantum sensors can detect magnetic fields and other physical quantities, with unprecedented spatial resolution and sensitivity, making them highly interesting for biomedical applications.

  • Optically pumped magnetometers offer new functionalities in clinical magnetoencephalography, with their wearable sensor helmet allowing the subject to perform tasks and move during the recording of brain activity.

  • Nitrogen–vacancy (NV)-centre-based magnetometry of single neurons and magnetic biomarkers, with subcellular resolution, opens new avenues in studying neuronal circuits and in rapid clinical testing.

  • Nuclear magnetic resonance based on NV centres in diamond enables microscale and nanoscale detection of single molecules and single cells, which could be applied in structure determination of transmembrane proteins and in metabolomics studies.

  • Nanodiamonds containing NV centres can locally probe temperature-dependent biological processes in cells and small organisms, such as cell development and endogenous heat generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum sensors will have an impact in biomedical research on different length scales.
Fig. 2: Operating principles of optically pumped magnetometers (OPMs) and nitrogen–vacancy (NV) magnetometers.
Fig. 3: Optically pumped magnetometer (OPM)-based magnetoencephalography (MEG).
Fig. 4: Nitrogen–vacancy (NV)-centre-based magnetic sensing of biological samples.
Fig. 5: Nuclear magnetic resonance (NMR) with nitrogen–vacancy (NV) centres.
Fig. 6: Thermometry with nitrogen–vacancy (NV) centres in nanodiamonds.

Similar content being viewed by others

References

  1. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  2. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  3. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  Google Scholar 

  4. Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 (2018).

    Article  ADS  Google Scholar 

  5. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    Article  ADS  Google Scholar 

  6. Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    Article  ADS  Google Scholar 

  7. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  8. Budker, D. & Romalis, M. Optical magnetometry. Nat. Phys. 3, 227–234 (2007).

    Article  Google Scholar 

  9. Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    Article  ADS  Google Scholar 

  10. Schirhagl, R. et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  ADS  Google Scholar 

  11. Simmonds, M., Fertig, W. & Giffard, R. Performance of a resonant input SQUID amplifier system. IEEE Trans. Magn. 15, 478–481 (1979).

    Article  ADS  Google Scholar 

  12. Balabas, M. V. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.105.070801 (2010).

    Article  Google Scholar 

  13. Dang, H. B., Maloof, A. C. & Romalis, M. V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010).

    Article  ADS  Google Scholar 

  14. Shah, V. et al. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photon. 1, 649–652 (2007).

    Article  ADS  Google Scholar 

  15. Fernholz, T. et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008).

    Article  ADS  Google Scholar 

  16. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  ADS  Google Scholar 

  17. Xu, S. et al. Magnetic resonance imaging with an optical atomic magnetometer. Proc. Natl Acad. Sci. USA 103, 12668–12671 (2006).

    Article  ADS  Google Scholar 

  18. Jensen, K. et al. Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Sci. Rep. 8, 16218 (2018).

    Article  ADS  Google Scholar 

  19. Deans, C. et al. Electromagnetic induction imaging with a radio-frequency atomic magnetometer. Appl. Phys. Lett. 108, 103503 (2016).

    Article  ADS  Google Scholar 

  20. Jensen, K. et al. Detection of low-conductivity objects using eddy current measurements with an optical magnetometer. Phys. Rev. Res. 1, 033087 (2019).

    Article  Google Scholar 

  21. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  22. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  23. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  24. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  25. Toyli, D. M. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012).

    Google Scholar 

  26. Fortman, B. et al. Electron–electron double resonance detected NMR spectroscopy using ensemble NV centers at 230 GHz and 8.3 T. J. Appl. Phys. 130, 083901 (2021).

    Article  ADS  Google Scholar 

  27. Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    Article  ADS  Google Scholar 

  28. Nguyen, C. T. et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl. Phys. Lett. 112, 203102 (2018).

    Article  ADS  Google Scholar 

  29. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  30. Zhang, C. et al. Diamond magnetometry and gradiometry towards subpicotesla DC field measurement. Phys. Rev. Appl. 15, 064075 (2021).

    Article  ADS  Google Scholar 

  31. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  ADS  Google Scholar 

  32. Dolde, F. et al. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).

    Article  Google Scholar 

  33. Schäfer-Nolte, E. et al. Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer. Phys. Rev. Lett. 113, 217204 (2014).

    Article  ADS  Google Scholar 

  34. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article  ADS  Google Scholar 

  35. Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  ADS  Google Scholar 

  36. Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article  ADS  Google Scholar 

  37. Williamson, S. J. & Manfried H. Advances in Biomagnetism (eds Williamson, S. J. et al.) (Springer, 2012).

  38. Allen, C. M. et al. Magnetoencephalography abnormalities in adult mild traumatic brain injury: a systematic review. NeuroImage Clin. 31, 102697 (2021).

    Article  Google Scholar 

  39. Poghosyan, V., Rampp, S. & Wang, Z. I. Editorial: magnetoencephalography (MEG) in epilepsy and neurosurgery. Front. Human Neurosci. https://doi.org/10.3389/fnhum.2022.873153 (2022).

  40. Hughes, L. E. et al. Magnetoencephalography insights to dementia and drug intervention. Alzheimer’s Dement. 17, e052536 (2021).

    Article  Google Scholar 

  41. Cohen, D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972).

    Article  ADS  Google Scholar 

  42. Hämäläinen, M. et al. Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

    Article  ADS  Google Scholar 

  43. QZFM Gen-3. QUSPIN https://quspin.com/products-qzfm/.

  44. Rea, M. et al. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann. NY Acad. Sci. 1517, 107–124 (2022).

    Article  ADS  Google Scholar 

  45. Brookes, M. J. et al. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage 236, 118025 (2021).

    Article  Google Scholar 

  46. Boto, E. et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. NeuroImage 252, 119027 (2022).

    Article  Google Scholar 

  47. Rea, M. et al. Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage 241, 118401 (2021).

    Article  Google Scholar 

  48. Iivanainen, J. et al. On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers. NeuroImage 194, 244–258 (2019).

    Article  Google Scholar 

  49. Mäkinen, A. J. et al. Magnetic-field modeling with surface currents. Part I. Physical and computational principles of bfieldtools. J. Appl. Phys. 128, 063906 (2020).

    Article  ADS  Google Scholar 

  50. Holmes, N. et al. A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage 181, 760–774 (2018).

    Article  Google Scholar 

  51. Limes, M. E. et al. Portable magnetometry for detection of biomagnetism in ambient environments. Phys. Rev. Appl. 14, 011002 (2020).

    Article  ADS  Google Scholar 

  52. Hill, R. M. et al. A tool for functional brain imaging with lifespan compliance. Nat. Commun. 10, 4785 (2019).

    Article  ADS  Google Scholar 

  53. Feys, O. et al. On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children. Radiology 304, 429–434 (2022).

    Article  Google Scholar 

  54. Barry, D. N. et al.Imaging the human hippocampus with optically-pumped magnetoencephalography. NeuroImage 203, 116192 (2019).

    Article  Google Scholar 

  55. Tierney, T. M. et al. Mouth magnetoencephalography: a unique perspective on the human hippocampus. NeuroImage 225, 117443 (2021).

    Article  Google Scholar 

  56. Boto, E. et al. Measuring functional connectivity with wearable MEG. NeuroImage 230, 117815 (2021).

    Article  Google Scholar 

  57. Westner, B. U. et al. Contactless measurements of retinal activity using optically pumped magnetometers. NeuroImage 243, 118528 (2021).

    Article  Google Scholar 

  58. Iivanainen, J., Zetter, R. & Parkkonen, L. Potential of on-scalp MEG: robust detection of human visual gamma-band responses. Hum. Brain Mapp. 41, 150–161 (2020).

    Article  Google Scholar 

  59. Roberts, G. et al. Towards OPM-MEG in a virtual reality environment. NeuroImage 199, 408–417 (2019).

    Article  Google Scholar 

  60. Hill, R. M. et al. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage 219, 116995 (2020).

    Article  Google Scholar 

  61. Batie, M. et al. Detection of fetal arrhythmia using optically-pumped magnetometers. JACC Clin. Electrophysiol. 4, 284–287 (2018).

    Article  Google Scholar 

  62. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  ADS  Google Scholar 

  63. Glenn, D. R. et al. Single-cell magnetic imaging using a quantum diamond microscope. Nat. Methods 12, 736–738 (2015).

    Article  Google Scholar 

  64. Fescenko, I. et al. Diamond magnetic microscopy of malarial hemozoin nanocrystals. Phys. Rev. Appl. 11, 034029 (2019).

    Article  ADS  Google Scholar 

  65. Atallah, J. et al. Rapid quantum magnetic IL-6 point-of-care assay in patients hospitalized with COVID-19. Diagnostics 12, 1164 (2022).

    Article  Google Scholar 

  66. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    Article  ADS  Google Scholar 

  67. Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem. Rev. 87, 901–927 (1987).

    Article  Google Scholar 

  68. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013).

    Article  ADS  Google Scholar 

  69. Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Sci. Adv. 5, eaau8038 (2019).

    Article  ADS  Google Scholar 

  70. Ermakova, A. et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013).

    Article  ADS  Google Scholar 

  71. Kaufmann, S. et al. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl Acad. Sci. USA 110, 10894–10898 (2013).

    Article  ADS  Google Scholar 

  72. Li, C. et al. All-optical quantum sensing of rotational Brownian motion of magnetic molecules. Nano Lett. 19, 7342–7348 (2019).

    Article  ADS  Google Scholar 

  73. Lobo, V. et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118–126 (2010).

    Article  Google Scholar 

  74. Knight, J. A. Review: free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 30, 145–158 (2000).

    Google Scholar 

  75. Nie, L. et al. Quantum monitoring of cellular metabolic activities in single mitochondria. Sci. Adv. 7, eabf0573 (2021).

    Article  ADS  Google Scholar 

  76. Nie, L. et al. Quantum sensing of free radicals in primary human dendritic cells. Nano Lett. 22, 1818–1825 (2022).

    Article  ADS  Google Scholar 

  77. Mamin, H. J. et al. Multipulse double-quantum magnetometry with near-surface nitrogen-vacancy centers. Phys. Rev. Lett. 113, 030803 (2014).

    Article  ADS  Google Scholar 

  78. Shields, B. J. et al. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article  ADS  Google Scholar 

  79. Arunkumar, N. et al. Quantum logic enhanced sensing in solid-state spin ensembles. Preprint at https://arxiv.org/abs/2203.12501 (2022).

  80. Babinec, T. M. et al. A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010).

    Article  ADS  Google Scholar 

  81. Edmonds, A. M. et al. Generation of nitrogen-vacancy ensembles in diamond for quantum sensors: optimization and scalability of CVD processes. Preprint at https://arxiv.org/abs/2004.01746 (2020).

  82. Joos, M. et al. Protecting qubit coherence by spectrally engineered driving of the spin environment. Preprint at https://arxiv.org/abs/2101.09654 (2021).

  83. Zhou, H. et al. Quantum metrology with strongly interacting spin systems. Phys. Rev. X 10, 031003 (2020).

    Google Scholar 

  84. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).

    Google Scholar 

  85. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  ADS  Google Scholar 

  86. Mansfield, P. Snapshot magnetic resonance imaging (Nobel Lecture). Angew. Chem. Int. Ed. 43, 5456–5464 (2004).

    Article  Google Scholar 

  87. Glover, P. & Mansfield, S. P. Limits to magnetic resonance microscopy. Rep. Prog. Phys. 65, 1489 (2002).

    Article  ADS  Google Scholar 

  88. Abraham, R., Fisher, J. & Loftus, P. Introduction to NMR Spectroscopy (Wiley, 2022); https://www.wiley.com/en-gb/Introduction+to+NMR+Spectroscopy-p-9780471918943.

  89. Weisman, I. D. et al. Recognition of cancer in vivo by nuclear magnetic resonance. Science 178, 1288–1290 (1972).

    Article  ADS  Google Scholar 

  90. Lauterbur, P. C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Article  ADS  Google Scholar 

  91. Fox, R. O., Evans, P. A. & Dobson, C. M. Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy. Nature 320, 192–194 (1986).

    Article  ADS  Google Scholar 

  92. Moraes, I. et al. Membrane protein structure determination — the next generation. Biochim. Biophys. Acta 1838, 78–87 (2014).

    Article  Google Scholar 

  93. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer) 3 sample volume. Science 339, 561–563 (2013).

    Article  ADS  Google Scholar 

  94. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  95. Herzog, B. E. et al. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble. Appl. Phys. Lett. 105, 043112 (2014).

    Article  ADS  Google Scholar 

  96. Smits, J. et al. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci. Adv. 5, eaaw7895 (2019).

    Article  ADS  Google Scholar 

  97. Bucher, D. B. et al. Hyperpolarization-enhanced NMR spectroscopy with femtomole sensitivity using quantum defects in diamond. Phys. Rev. X 10, 021053 (2020).

    Google Scholar 

  98. Arunkumar, N. et al. Micron-scale NV-NMR spectroscopy with signal amplification by reversible exchange. PRX Quantum 2, 010305 (2021).

    Article  Google Scholar 

  99. Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  100. DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

    Article  ADS  Google Scholar 

  101. Schlipf, L. et al. A molecular quantum spin network controlled by a single qubit. Sci. Adv. 3, e1701116 (2017).

    Article  ADS  Google Scholar 

  102. Schwartz, I. et al. Blueprint for nanoscale NMR. Sci. Rep. 9, 6938 (2019).

    Article  ADS  Google Scholar 

  103. Pfender, M. et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat. Commun. 8, 834 (2017).

    Article  ADS  Google Scholar 

  104. Boss, J. M. et al. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    Article  ADS  Google Scholar 

  105. Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).

    Article  ADS  Google Scholar 

  106. Cohen, D. et al. Confined Nano-NMR spectroscopy using NV centers. Adv. Quantum Technol. 3, 2000019 (2020).

    Article  Google Scholar 

  107. Aslam, N. et al. Nanoscale nuclear magnetic resonance with quantum sensors enhanced by nanostructures. In Quantum 2.0 Conference and Exhibition (2022) Paper QW4C.3 (Optica Publishing Group, 2022).

  108. Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).

    Article  ADS  Google Scholar 

  109. Ajoy, A. et al. Room temperature ‘optical nanodiamond hyperpolarizer’: physics, design, and operation. Rev. Sci. Instrum. 91, 023106 (2020).

    Article  ADS  Google Scholar 

  110. Ajoy, A. et al. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. Sci. Adv. 4, eaar5492 (2018).

    Article  ADS  Google Scholar 

  111. Schwartz, I. et al. Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics. Sci. Adv. 4, eaat8978 (2018).

    Article  ADS  Google Scholar 

  112. Tetienne, J.-P. et al. Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 97, 085402 (2018).

    Article  ADS  Google Scholar 

  113. Rubinas, O. R. et al. Optimization of the coherence properties of diamond samples with an intermediate concentration of NV centers. Results Phys. 21, 103845 (2021).

    Article  Google Scholar 

  114. Dhomkar, S. et al. Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond. Nano Lett. 18, 4046–4052 (2018).

    Article  ADS  Google Scholar 

  115. Häberle, T. et al. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

    Article  ADS  Google Scholar 

  116. Liu, K. S. et al. Surface NMR using quantum sensors in diamond. Proc. Natl Acad. Sci. USA 119, e2111607119 (2022).

    Article  Google Scholar 

  117. Xie, M. et al. Biocompatible surface functionalization architecture for a diamond quantum sensor. Proc. Natl Acad. Sci. USA 119, e2114186119 (2022).

    Article  Google Scholar 

  118. Abendroth, J. M. et al. Single-nitrogen–vacancy NMR of amine-functionalized diamond surfaces. Nano Lett. 22, 7294–7303 (2022).

    Article  ADS  Google Scholar 

  119. Stürner, F. M. et al. Integrated and portable magnetometer based on nitrogen-vacancy ensembles in diamond. Adv. Quantum Technol. 4, 2000111 (2021).

    Article  Google Scholar 

  120. Ibrahim, M. I. et al. High-scalability CMOS quantum magnetometer with spin-state excitation and detection of diamond color centers. IEEE J. Solid State Circuits 56, 1001–1014 (2021).

    Article  ADS  Google Scholar 

  121. Sotoma, S., Epperla, C. P. & Chang, H.-C. Diamond nanothermometry. ChemNanoMat 4, 15–27 (2018).

    Article  Google Scholar 

  122. Toyli, D. M. et al. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    Article  ADS  Google Scholar 

  123. Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    Article  ADS  Google Scholar 

  124. Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    Article  ADS  Google Scholar 

  125. Plakhotnik, T. et al. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV center in nanodiamond. Nano Lett. 14, 4989–4996 (2014).

    Article  ADS  Google Scholar 

  126. Mochalin, V. N. et al. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    Article  ADS  Google Scholar 

  127. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011).

    Article  ADS  Google Scholar 

  128. van der Laan, K. J. et al. Nanodiamonds for in vivo applications. Small 14, 1703838 (2018).

    Article  Google Scholar 

  129. Mohan, N. et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

    Article  ADS  Google Scholar 

  130. Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012).

    Article  ADS  Google Scholar 

  131. Zhou, J. et al. Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020).

    Article  Google Scholar 

  132. Smith, B. R. et al. Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 1649–1653 (2009).

    Article  Google Scholar 

  133. Yuan, Y. et al. Biodistribution and fate of nanodiamonds in vivo. Diam. Relat. Mater. 18, 95–100 (2009).

    Article  ADS  Google Scholar 

  134. Wu, Y. et al. Diamond quantum devices in biology. Angew. Chem. Int. Ed. 55, 6586–6598 (2016).

    Article  Google Scholar 

  135. Fujiwara, M. et al. Real-time nanodiamond thermometry probing in vivo thermogenic responses. Sci. Adv. 6, eaba9636 (2020).

    Article  ADS  Google Scholar 

  136. Simpson, D. A. et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017).

    Article  Google Scholar 

  137. Choi, J. et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl Acad. Sci. USA 117, 14636–14641 (2020).

    Article  ADS  Google Scholar 

  138. Jaque, D. et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014).

    Article  ADS  Google Scholar 

  139. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  Google Scholar 

  140. Kamei, Y. et al. Infrared laser-mediated gene induction in targeted single cells in vivo. Nat. Methods 6, 79–81 (2009).

    Article  Google Scholar 

  141. Bath, D. E. et al. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat. Methods 11, 756–762 (2014).

    Article  Google Scholar 

  142. Hirsch, S. M. et al. FLIRT: fast local infrared thermogenetics for subcellular control of protein function. Nat. Methods 15, 921–923 (2018).

    Article  Google Scholar 

  143. Bastos, A. R. N. et al. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 29, 1905474 (2019).

    Article  Google Scholar 

  144. Arai, S. et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem. Commun. 51, 8044–8047 (2015).

    Article  Google Scholar 

  145. Kiyonaka, S. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10, 1232–1238 (2013).

    Article  Google Scholar 

  146. Baffou, G. et al. A critique of methods for temperature imaging in single cells. Nat. Methods 11, 899–901 (2014).

    Article  Google Scholar 

  147. Nagl, A., Hemelaar, S. R. & Schirhagl, R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes — a review. Anal. Bioanal. Chem. 407, 7521–7536 (2015).

    Article  Google Scholar 

  148. Wang, N. et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions. Phys. Rev. X 8, 011042 (2018).

    Google Scholar 

  149. Brookes, M. J. et al. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends Neurosci. 45, 621–634 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Moore Foundation. N.A. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hongkun Park.

Ethics declarations

Competing interests

The authors declare the following competing interests: R.L.W., M.D.L. and H.P. are scientific co-founders of QDTI Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, N., Zhou, H., Urbach, E.K. et al. Quantum sensors for biomedical applications. Nat Rev Phys 5, 157–169 (2023). https://doi.org/10.1038/s42254-023-00558-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00558-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing