Quantum Physics
[Submitted on 9 Sep 2024]
Title:Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits
View PDF HTML (experimental)Abstract:Quantum computing holds the promise of solving classically intractable problems. Enabling this requires scalable and hardware-efficient quantum processors with vanishing error rates. This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing in superconducting circuits. By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level, therefore reducing drastically the hardware requirements to bring fault-tolerant quantum computing to scale. Going beyond the well-known Gottesman-Kitaev-Preskill (GKP) code, we discuss how using multiple bosonic modes to encode a single qubit offers increased protection against control errors and enhances its overall error-correcting capabilities. Given recent successful demonstrations of critical components of this architecture, we argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
Submission history
From: Marc-Antoine Lemonde [view email][v1] Mon, 9 Sep 2024 17:20:06 UTC (6,258 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.