Embezzling entanglement from quantum fields

Lauritz van Luijk, Alexander Stottmeister,
Reinhard F. Werner, Henrik Wilming
Institut für Theoretische Physik, Leibniz Universität Hannover,
Appelstraße 2, 30167 Hannover, Germany
(October 23, 2024)
Abstract

Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system (the “embezzler”) via local quantum operations while hardly perturbing the latter. We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras. Our result implies that relativistic quantum fields are universal embezzlers: Any entangled state of any dimension can be embezzled from them with arbitrary precision. This provides an operational characterization of the infinite amount of entanglement present in the vacuum state of relativistic quantum field theories.

Entanglement allows a pair of quantum systems to exhibit stronger correlations than classical systems. Once considered paradoxical, today we think of entanglement as a precious resource that can power quantum information processing. It is an essential ingredient in quantum teleportation [1] or quantum cryptography [2, 3], and quantum computers require large amounts of entanglement to exhibit an advantage over their classical counterparts [4]. In quantum mechanics, various measures of entanglement are available. For example, the entanglement content of a quantum system described by pure states can be quantified using entanglement entropy, which has an operational meaning in terms of entanglement distillation [5].

In recent years, increased attention has been paid to entanglement in the context of quantum field theories [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. It has long been known that quantum states of relativistic quantum fields are highly entangled and that they can be used to violate Bell inequalities perfectly [19, 20, 21]. In fact, the entanglement between any region of spacetime and its causal complement is infinite – a property that asks for an operational explanation. Building on the holographic principle [22, 23, 24, 25, 26], it has even been hypothesized that entanglement provides the basis for the geometry of spacetime itself [27, 28, 29].

Like other resources, entanglement deteriorates under usage: Entanglement quantifiers decrease, and the ability of the associated quantum systems to power quantum information processing tasks lessens. Like other resources, one is tempted to ask whether entanglement can be extracted in a way that makes it impossible (or arbitrarily hard) to detect – in other words, to embezzle entanglement.

Here, we study the task of embezzlement of entanglement [30] and explore its ultimate limits. We report on the discovery of a deep link between embezzlement and the mathematical classification of type III von Neumann algebras (see [31] for the proofs of the statements in this paper). Our results lend direct operational meaning to the infinite entanglement of quantum states of relativistic quantum fields in terms of embezzlement: It is possible to embezzle any quantum state of any dimension to any precision from any quantum state of a relativistic quantum field while making sure that the state of the quantum field is perturbed arbitrarily little. Conversely, the only types of quantum systems that allow for such universal behavior are necessarily of the same mathematical nature as relativistic quantum fields. In the following, we explain these results, which can seen as part of a wider effort of exploring the operational significance of the infinite entanglement in quantum systems with infinitely many degrees of freedom by operator algebraic methods (see e.g. [19, 20, 21, 32, 33, 34, 35, 16, 36, 37, 38, 31, 39, 40, 41]).

Embezzlement of entanglement.

Van Dam and Hayden showed for the first time that it is possible to embezzle entanglement if a suitable quantum system is available [30]. They proved that the family of pure quantum states |Ωn=Cnj=1n1j|jA|jBketsubscriptΩ𝑛subscript𝐶𝑛superscriptsubscript𝑗1𝑛tensor-product1𝑗subscriptket𝑗𝐴subscriptket𝑗𝐵|\Omega_{n}\rangle=C_{n}\sum_{j=1}^{n}\frac{1}{\sqrt{j}}|j\rangle_{A}\otimes|j% \rangle_{B}| roman_Ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟩ = italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_j end_ARG end_ARG | italic_j ⟩ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ | italic_j ⟩ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT on Hilbert spaces =ABtensor-productsubscript𝐴subscript𝐵\mathcal{H}\!=\!\mathcal{H}_{A}\!\otimes\!\mathcal{H}_{B}caligraphic_H = caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ caligraphic_H start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT of dimension n2superscript𝑛2n^{2}italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT has the following property: For all bipartite quantum states |Φ,|ΨketΦketΨ|\Phi\rangle,|\Psi\rangle| roman_Φ ⟩ , | roman_Ψ ⟩ on a d2superscript𝑑2d^{2}italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-dimensional Hilbert space 𝒦=𝒦A𝒦B𝒦tensor-productsubscript𝒦superscript𝐴subscript𝒦superscript𝐵\mathcal{K}\!=\!\mathcal{K}_{A^{\prime}}\!\otimes\!\mathcal{K}_{B^{\prime}}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ⊗ caligraphic_K start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, there exist unitaries uAAsubscript𝑢𝐴superscript𝐴u_{AA^{\prime}}italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and uBBsubscript𝑢𝐵superscript𝐵u_{BB^{\prime}}italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT acting on AA𝐴superscript𝐴AA^{\prime}italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and BB𝐵superscript𝐵BB^{\prime}italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, respectively, such that

uAAuBB|Ωn|Φ|Ωn|Ψtensor-productsubscript𝑢𝐴superscript𝐴subscript𝑢𝐵superscript𝐵ketsubscriptΩ𝑛ketΦtensor-productketsubscriptΩ𝑛ketΨ\displaystyle u_{AA^{\prime}}u_{BB^{\prime}}|\Omega_{n}\rangle\otimes|\Phi% \rangle\approx|\Omega_{n}\rangle\otimes|\Psi\rangleitalic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT | roman_Ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟩ ⊗ | roman_Φ ⟩ ≈ | roman_Ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟩ ⊗ | roman_Ψ ⟩ (1)

with an error of 4logdlogn4𝑑𝑛4\frac{\log d}{\log n}4 divide start_ARG roman_log italic_d end_ARG start_ARG roman_log italic_n end_ARG, which can be made arbitrarily small by increasing n𝑛nitalic_n. In particular, Alice and Bob can extract arbitrary entangled states |ΨketΨ|\Psi\rangle| roman_Ψ ⟩ from any unentangled state |Φ=|ΦA|ΦBketΦtensor-productketsubscriptΦsuperscript𝐴ketsubscriptΦsuperscript𝐵|\Phi\rangle=|\Phi_{A^{\prime}}\rangle\otimes|\Phi_{B^{\prime}}\rangle| roman_Φ ⟩ = | roman_Φ start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ⟩ ⊗ | roman_Φ start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ⟩ with arbitrarily small error. It is even guaranteed that any measurement scheme aiming to detect the extraction of entanglement from the system AB𝐴𝐵ABitalic_A italic_B has an arbitrarily small success probability. In short, Alice and Bob have “embezzled” entanglement.

On the other hand, for every n𝑛nitalic_n, there are quantum states |ΨketΨ|\Psi\rangle| roman_Ψ ⟩ with ndmuch-less-than𝑛𝑑n\ll ditalic_n ≪ italic_d such that the error approaches the maximal error 2222.

It has been shown that any family of bipartite pure states with the above property must have Schmidt coefficients asymptotically scaling like 1/j1𝑗1/j1 / italic_j [42, 43]. Even in an infinite dimensional Hilbert space, one therefore cannot simply take the limit n𝑛n\rightarrow\inftyitalic_n → ∞ and obtain a valid quantum state. Indeed, it has been shown before that perfect embezzlement, i.e., without error margin, is incompatible with a tensor product structure [35].

Besides the foundational importance for our understanding of entanglement, embezzlement also served as an important proof device in quantum information theory, for example, for the celebrated Quantum Reverse Shannon Theorem [44, 45, 46, 47] and in the context of non-local games [48, 49, 35, 47].

Commuting operator framework.

We overcome the hurdles above by relaxing the assumption that \mathcal{H}caligraphic_H factorizes into ABtensor-productsubscript𝐴subscript𝐵\mathcal{H}_{A}\otimes\mathcal{H}_{B}caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ caligraphic_H start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT. Instead, we assume that Alice’s and Bob’s systems are described by commuting observable algebras A,Bsubscript𝐴subscript𝐵{\mathcal{M}}_{A},{\mathcal{M}}_{B}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT acting on a Hilbert space \mathcal{H}caligraphic_H. A/Bsubscript𝐴𝐵{\mathcal{M}}_{A/B}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT contain the operators that Alice/Bob can use to control and measure their subsystems.

We make the standard assumption that Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT (and similarly Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT) is a von Neumann algebra: it is closed in the topology induced by demanding that expectation values ATrρAmaps-to𝐴Tr𝜌𝐴A\mapsto\operatorname{Tr}\rho Aitalic_A ↦ roman_Tr italic_ρ italic_A are continuous functions for all AA𝐴subscript𝐴A\in\mathcal{M}_{A}italic_A ∈ caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and all density matrices ρ𝜌\rhoitalic_ρ on {\mathcal{H}}caligraphic_H. We still demand that Bob has access to all the operators commuting with Alice’s algebra Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT, i.e., Bob’s algebra Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT is the commutant Asuperscriptsubscript𝐴\mathcal{M}_{A}^{\prime}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT of Alice’s algebra. For simplicity, we assume that Alice’s and Bob’s parts are purely quantum (no non-trivial classical degrees of freedom), meaning that Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and Bsubscript𝐵{\mathcal{M}}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT are factors: Within A/Bsubscript𝐴𝐵\mathcal{M}_{A/B}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT, the only operators commuting with all others are scalars. All these assumptions are met in the usual tensor product scenario by setting A=(A)1Bsubscript𝐴tensor-productsubscript𝐴subscript1𝐵{\mathcal{M}}_{A}={\mathcal{B}}({\mathcal{H}}_{A})\otimes\text{1}_{B}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = caligraphic_B ( caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) ⊗ 1 start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, B=1A(B)subscript𝐵tensor-productsubscript1𝐴subscript𝐵{\mathcal{M}}_{B}=\text{1}_{A}\otimes{\mathcal{B}}({\mathcal{H}}_{B})caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ caligraphic_B ( caligraphic_H start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ). Embezzlement of entanglement is expressed in this setting by the existence of a vector |ΩketΩ|\Omega\rangle\in{\mathcal{H}}| roman_Ω ⟩ ∈ caligraphic_H such that for arbitrary target states |Φ,|Ψ𝒦A𝒦BketΦketΨtensor-productsubscript𝒦superscript𝐴subscript𝒦superscript𝐵|\Phi\rangle,|\Psi\rangle\in\mathcal{K}_{A^{\prime}}\otimes\mathcal{K}_{B^{% \prime}}| roman_Φ ⟩ , | roman_Ψ ⟩ ∈ caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ⊗ caligraphic_K start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and error threshold ε>0𝜀0\varepsilon>0italic_ε > 0:

uAAuBB|Ω|Φ|Ω|Ψ<ε,delimited-∥∥tensor-productsubscript𝑢𝐴superscript𝐴subscript𝑢𝐵superscript𝐵ketΩketΦtensor-productketΩketΨ𝜀\displaystyle\lVert u_{AA^{\prime}}u_{BB^{\prime}}|\Omega\rangle\otimes|\Phi% \rangle-|\Omega\rangle\otimes|\Psi\rangle\rVert<\varepsilon,∥ italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT | roman_Ω ⟩ ⊗ | roman_Φ ⟩ - | roman_Ω ⟩ ⊗ | roman_Ψ ⟩ ∥ < italic_ε , (2)

for local unitaries uAAA(𝒦A)1Bsubscript𝑢𝐴superscript𝐴tensor-producttensor-productsubscript𝐴subscript𝒦superscript𝐴subscript1superscript𝐵u_{AA^{\prime}}\in{\mathcal{M}}_{A}\otimes\mathcal{B}(\mathcal{K}_{A^{\prime}}% )\otimes\text{1}_{B^{\prime}}italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) ⊗ 1 start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, uBBB1A(𝒦B)subscript𝑢𝐵superscript𝐵tensor-productsubscript𝐵subscript1𝐴subscript𝒦superscript𝐵u_{BB^{\prime}}\in{\mathcal{M}}_{B}\otimes\text{1}_{A}\otimes\mathcal{B}(% \mathcal{K}_{B^{\prime}})italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ⊗ 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) of Alice and Bob, respectively.

type I II III0 IIIλ III1
κminsubscript𝜅min\kappa_{\textit{min}}italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT 2222 2222 00 or 2222 00 00
κmaxsubscript𝜅max\kappa_{\textit{max}}italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT 2222 2222 2222 21λ1+λ21𝜆1𝜆2\frac{1-\sqrt{\lambda}}{1+\sqrt{\lambda}}2 divide start_ARG 1 - square-root start_ARG italic_λ end_ARG end_ARG start_ARG 1 + square-root start_ARG italic_λ end_ARG end_ARG 00
Table 1: Values of the invariants κminsubscript𝜅min\kappa_{\textit{min}}italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT and κmaxsubscript𝜅max\kappa_{\textit{max}}italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT for factors of a given type (with 0<λ<10𝜆10<\lambda<10 < italic_λ < 1). Since 21λ1+λ21𝜆1𝜆2\frac{1-\sqrt{\lambda}}{1+\sqrt{\lambda}}2 divide start_ARG 1 - square-root start_ARG italic_λ end_ARG end_ARG start_ARG 1 + square-root start_ARG italic_λ end_ARG end_ARG is bijective in λ𝜆\lambdaitalic_λ, the subtype of a type III factor can be determined from its embezzling capability. See [31] for full details and rigorous proofs.

Since the situation is completely symmetric between Alice and Bob, we subsequently drop the subscripts and simply write \mathcal{M}caligraphic_M and superscript\mathcal{M}^{\prime}caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Moreover, we can invoke this symmetry to phrase the bipartite statement Eq. 2 solely in terms of Alice’s system.

Monopartite vs bipartite embezzlement.

Just as transformations between entangled pure states via local operations and classical communication (LOCC) can be reduced to studying their marginals on one system [50], embezzlement of entanglement can be reduced to monopartite embezzlement of marginals (reduced states) on Alice’s systems. A quantum state ω𝜔\omegaitalic_ω on a von Neumann algebra {\mathcal{M}}caligraphic_M assigns expectation values to operators via Aω(A)maps-to𝐴𝜔𝐴A\mapsto\omega(A)italic_A ↦ italic_ω ( italic_A ) and may be represented by a density matrix on {\mathcal{H}}caligraphic_H so that ω(A)=TrρA𝜔𝐴Tr𝜌𝐴\omega(A)=\operatorname{Tr}\rho Aitalic_ω ( italic_A ) = roman_Tr italic_ρ italic_A. Since different density matrices may induce the same state on {\mathcal{M}}caligraphic_M, quantum states are described by (positive and unital) linear functionals on {\mathcal{M}}caligraphic_M and not by density operators on {\mathcal{H}}caligraphic_H. Suppose now that for some state ω𝜔\omegaitalic_ω on \mathcal{M}caligraphic_M and a unitary u(𝒦)𝑢tensor-product𝒦u\in\mathcal{M}\otimes\mathcal{B}(\mathcal{K})italic_u ∈ caligraphic_M ⊗ caligraphic_B ( caligraphic_K ) we have

u(ωφ)uωψ<ε2,delimited-∥∥𝑢tensor-product𝜔𝜑superscript𝑢tensor-product𝜔𝜓superscript𝜀2\displaystyle\lVert u(\omega\otimes\varphi)u^{*}-\omega\otimes\psi\rVert<% \varepsilon^{2},∥ italic_u ( italic_ω ⊗ italic_φ ) italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_ω ⊗ italic_ψ ∥ < italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (3)

where φ𝜑\varphiitalic_φ and ψ𝜓\psiitalic_ψ are (generally mixed) states on (𝒦)𝒦\mathcal{B}(\mathcal{K})caligraphic_B ( caligraphic_K ), and \|\cdot\|∥ ⋅ ∥ is the norm on the dual space of (𝒦)tensor-product𝒦{\mathcal{M}}\otimes{\mathcal{B}}({\mathcal{K}})caligraphic_M ⊗ caligraphic_B ( caligraphic_K ). Then, our assumptions imply (see [31]) that there exists a unitary u(𝒦)superscript𝑢tensor-productsuperscriptsuperscript𝒦u^{\prime}\in\mathcal{M}^{\prime}\otimes\mathcal{B}(\mathcal{K}^{\prime})italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) such that Eq. 2 holds for purifications |Φ,|Ψ𝒦𝒦ketΦketΨtensor-product𝒦superscript𝒦|\Phi\rangle,|\Psi\rangle\in\mathcal{K}\otimes\mathcal{K}^{\prime}| roman_Φ ⟩ , | roman_Ψ ⟩ ∈ caligraphic_K ⊗ caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT of φ𝜑\varphiitalic_φ and ψ𝜓\psiitalic_ψ, and |ΩketΩ|\Omega\rangle\in{\mathcal{H}}| roman_Ω ⟩ ∈ caligraphic_H of ω𝜔\omegaitalic_ω, respectively. Therefore monopartite embezzlement in the sense of (3) implies embezzlement of entanglement (in the sense of (2)). Conversely, it is clear that embezzlement of entanglement implies monopartite embezzlement by reducing to Alice’s systems. Thus, the two are equivalent.

We can measure how well a state ω𝜔\omegaitalic_ω on \mathcal{M}caligraphic_M can embezzle arbitrary finite-dimensional quantum states by the quantity

κ(ω):=supdsupψ,φinfuu(ωφ)uωψ.assign𝜅𝜔subscriptsupremum𝑑subscriptsupremum𝜓𝜑subscriptinfimum𝑢delimited-∥∥𝑢tensor-product𝜔𝜑superscript𝑢tensor-product𝜔𝜓\displaystyle\kappa(\omega):=\sup_{d}\sup_{\psi,\,\varphi}\inf_{u}\,\lVert u(% \omega\otimes\varphi)u^{*}-\omega\otimes\psi\rVert.italic_κ ( italic_ω ) := roman_sup start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_ψ , italic_φ end_POSTSUBSCRIPT roman_inf start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ∥ italic_u ( italic_ω ⊗ italic_φ ) italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_ω ⊗ italic_ψ ∥ . (4)

Here, ψ,φ𝜓𝜑\psi,\varphiitalic_ψ , italic_φ are states on an d𝑑ditalic_d-dimensional Hilbert space 𝒦𝒦\mathcal{K}caligraphic_K and u(𝒦)𝑢tensor-product𝒦u\in\mathcal{M}\otimes\mathcal{B}(\mathcal{K})italic_u ∈ caligraphic_M ⊗ caligraphic_B ( caligraphic_K ) is unitary. The derived quantities

κmin():=infωκ(ω),κmax():=supωκ(ω),formulae-sequenceassignsubscript𝜅minsubscriptinfimum𝜔𝜅𝜔assignsubscript𝜅maxsubscriptsupremum𝜔𝜅𝜔\displaystyle\kappa_{\textit{min}}(\mathcal{M}):=\inf_{\omega}\kappa(\omega),% \quad\kappa_{\textit{max}}(\mathcal{M}):=\sup_{\omega}\kappa(\omega),italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT ( caligraphic_M ) := roman_inf start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT italic_κ ( italic_ω ) , italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT ( caligraphic_M ) := roman_sup start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT italic_κ ( italic_ω ) , (5)

where we optimize over states on {\mathcal{M}}caligraphic_M, quantify the best and worst possible embezzling performances of states on \mathcal{M}caligraphic_M.

κmin()subscript𝜅min\kappa_{\textit{min}}(\mathcal{M})italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT ( caligraphic_M ) and κmax()subscript𝜅max\kappa_{\textit{max}}(\mathcal{M})italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT ( caligraphic_M ) are algebraic invariants of \mathcal{M}caligraphic_M, which allow us to classify von Neumann algebras. To state our main technical result, we recall that there is a standard classification of factors into types I, II, and III. Famously, Alain Connes provided a finer classification of type III algebras into subtypes IIIλ with λ[0,1]𝜆01\lambda\in[0,1]italic_λ ∈ [ 0 , 1 ] using deep arguments based on modular theory [51, 52]. Below and in the end matter we provide examples of factors of the different types in terms of infinite spin chains. With this in mind, our discovery is that the derived invariant κmaxsubscript𝜅max\kappa_{\textit{max}}italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT, and hence embezzlement, precisely recovers the subtypes of Connes’ classification of type III factors as shown in Tab. 1. These results show that all type IIIλ factors with λ>0𝜆0\lambda>0italic_λ > 0 admit an embezzling state: a state that can embezzle any pure, bipartite quantum state of arbitrary dimension with arbitrary accuracy while being disturbed arbitrarily little. In particular, we find that the worst error κmax()subscript𝜅max\kappa_{\textit{max}}(\mathcal{M})italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT ( caligraphic_M ) strictly decreases as λ1𝜆1\lambda\rightarrow 1italic_λ → 1. Most importantly, type III1 factors are characterized by the fact that every state is an embezzling state. Hence, we call systems described by type III1 factors universal embezzlers, exhibiting the strongest form of infinite entanglement quantified by κmaxsubscript𝜅𝑚𝑎𝑥\kappa_{max}italic_κ start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT. In contrast, type I and II algebras admit no embezzling states – there always exist pairs of states φ,ψ𝜑𝜓\varphi,\psiitalic_φ , italic_ψ that lead (arbitrarily close) to the maximally allowed value κ(ω)=2𝜅𝜔2\kappa(\omega)=2italic_κ ( italic_ω ) = 2. Remarkably, there is a strict dichotomy: A quantum system either has an embezzling state, or it does not admit any form of approximate embezzlement in the sense that κ(ω)=2𝜅𝜔2\kappa(\omega)=2italic_κ ( italic_ω ) = 2 for all states. Therefore, the invariant κminsubscript𝜅min\kappa_{\textit{min}}italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT can only take on the extremal values 00 or 2222.

Techniques.

We briefly sketch how the results are obtained:

Refer to caption
Figure 1: Why universal embezzlers have type III1. a) An infinite spin chain is described relative to a product state ρ=j=1ρj\rho=\otimes_{j=1}^{\infty}\rho_{j}italic_ρ = ⊗ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT. b) The states of the spin chain can be arbitrary on the first n𝑛nitalic_n spins, but converge to ρ𝜌\rhoitalic_ρ on the remaining spins. This allows to approximate any state ω𝜔\omegaitalic_ω by ωnρ>ntensor-productsubscript𝜔absent𝑛subscript𝜌absent𝑛\omega_{\leq n}\otimes\rho_{>n}italic_ω start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT for sufficiently large n𝑛nitalic_n. c) If the spin chain is a universal embezzler ρ>nsubscript𝜌absent𝑛\rho_{>n}italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT must already be an embezzling state. We can hence (approximately) unitarily transform ωωnρ>n𝜔tensor-productsubscript𝜔absent𝑛subscript𝜌absent𝑛\omega\approx\omega_{\leq n}\otimes\rho_{>n}italic_ω ≈ italic_ω start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT to σnρ>nσtensor-productsubscript𝜎absent𝑛subscript𝜌absent𝑛𝜎\sigma_{\leq n}\otimes\rho_{>n}\approx\sigmaitalic_σ start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT ≈ italic_σ, for any two states ω,σ𝜔𝜎\omega,\sigmaitalic_ω , italic_σ.

By utilizing the “flow of weights” introduced by Connes and Takesaki [51, 53, 54], one can associate to a state ω𝜔\omegaitalic_ω on a von Neumann algebra {\mathcal{M}}caligraphic_M a probability distribution Pωsubscript𝑃𝜔P_{\omega}italic_P start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT on a classical dynamical system [55]. The latter will be ergodic if {\mathcal{M}}caligraphic_M is a factor. Building upon work by Haagerup and Størmer in [56], we show that the embezzlement quantifier κ(ω)𝜅𝜔\kappa(\omega)italic_κ ( italic_ω ) measures precisely how much Pωsubscript𝑃𝜔P_{\omega}italic_P start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT deviates from being invariant under the ergodic flow – with embezzling states corresponding to invariant distributions. We can calculate κ𝜅\kappaitalic_κ, κminsubscript𝜅min\kappa_{\textit{min}}italic_κ start_POSTSUBSCRIPT min end_POSTSUBSCRIPT and κmaxsubscript𝜅max\kappa_{\textit{max}}italic_κ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT by studying the classical ergodic system associated with a factor.

Universal embezzlers.

In the following, we explain why universal embezzlers are precisely described by type III1 factors without using the machinery from the previous paragraph: Such factors are uniquely characterized by the homogeneity of the state space, discovered by Connes and Størmer [57]: For any two states ω1,ω2subscript𝜔1subscript𝜔2\omega_{1},\omega_{2}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and every ε>0𝜀0\varepsilon>0italic_ε > 0 there exists a unitary in {\mathcal{M}}caligraphic_M such that

uω1uω2<ε.delimited-∥∥𝑢subscript𝜔1superscript𝑢subscript𝜔2𝜀\displaystyle\lVert u\omega_{1}u^{*}-\omega_{2}\rVert<\varepsilon.∥ italic_u italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ < italic_ε . (6)

Another crucial property is that (𝒦)tensor-product𝒦{\mathcal{M}}\cong{\mathcal{M}}\otimes\mathcal{B}(\mathcal{K})caligraphic_M ≅ caligraphic_M ⊗ caligraphic_B ( caligraphic_K ) for any n𝑛nitalic_n-dimensional Hilbert space 𝒦𝒦\mathcal{K}caligraphic_K. Combining the latter property with the homogeneity of the state space tells us that we can find a unitary u𝑢uitalic_u for any state φ𝜑\varphiitalic_φ on (𝒦)𝒦\mathcal{B}(\mathcal{K})caligraphic_B ( caligraphic_K ) and any precision ε>0𝜀0\varepsilon>0italic_ε > 0 such that uωuεωφsubscript𝜀𝑢𝜔superscript𝑢tensor-product𝜔𝜑u\omega u^{*}\approx_{\varepsilon}\omega\otimes\varphiitalic_u italic_ω italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≈ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT italic_ω ⊗ italic_φ.

As a converse, we provide a heuristic argument for factors appearing in many-body physics and quantum field theory to be of type III1 if they are universal embezzlers (see Fig. 1 for an illustration and [31] for a proof): The set-up is as follows: The von Neumann algebras arising in physics allow for finite-dimensional approximations (i.e., are ‘hyperfinite’). We can view any such algebra as the von Neumann algebra \mathcal{M}caligraphic_M of a half-infinite chain of uncorrelated spin-1/2 particles in a product state ρ=jρj\rho=\otimes_{j}\rho_{j}italic_ρ = ⊗ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT 111The only possible exceptions are type III0subscriptIII0\mathrm{III}_{0}roman_III start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT algebras, which are uncommon in physics applications.. Such spin chains enjoy two important properties:

First, we can remove any finite number of spins from the spin chain, with the remainder being unitarily equivalent to the original. Second, all states ω𝜔\omegaitalic_ω on {\mathcal{M}}caligraphic_M can be approximated to arbitrary precision ε>0𝜀0\varepsilon>0italic_ε > 0 as

ωεωnρ>n,ρ>n:=j=n+1ρj,\displaystyle\omega\approx_{\varepsilon}\omega_{\leq n}\otimes\rho_{>n},\quad% \rho_{>n}:=\otimes_{j=n+1}^{\infty}\rho_{j},italic_ω ≈ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT := ⊗ start_POSTSUBSCRIPT italic_j = italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , (7)

for sufficiently large n𝑛nitalic_n, where ωnsubscript𝜔absent𝑛\omega_{\leq n}italic_ω start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT is the restriction of ω𝜔\omegaitalic_ω to the first n𝑛nitalic_n spins. Informally, we may say that all states “agree at infinity” with the product state ρ𝜌\rhoitalic_ρ.

Given the above, the heuristic argument goes as follows: Suppose that \mathcal{M}caligraphic_M is universal embezzling. The first property tells us that if every state on \mathcal{M}caligraphic_M is embezzling, the same will hold for every state after removing the first n𝑛nitalic_n spins. In particular, the states ρ>nsubscript𝜌absent𝑛\rho_{>n}italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT are embezzling states. Since the first n𝑛nitalic_n spins are described by a finite-dimensional Hilbert space, we find that for any state ωnsubscriptsuperscript𝜔absent𝑛\omega^{\prime}_{\leq n}italic_ω start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT on the first n𝑛nitalic_n spins and any precision ε>0𝜀0\varepsilon>0italic_ε > 0, there is a unitary u𝑢uitalic_u such that

u(ωnρ>n)uεωnρ>n.subscript𝜀𝑢tensor-productsubscript𝜔absent𝑛subscript𝜌absent𝑛superscript𝑢tensor-productsubscriptsuperscript𝜔absent𝑛subscript𝜌absent𝑛\displaystyle u(\omega_{\leq n}\otimes\rho_{>n})u^{*}\approx_{\varepsilon}% \omega^{\prime}_{\leq n}\otimes\rho_{>n}.italic_u ( italic_ω start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT ) italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≈ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT ⊗ italic_ρ start_POSTSUBSCRIPT > italic_n end_POSTSUBSCRIPT . (8)

By the second property, all states are of this form to arbitrary precision. Hence any two states ω,ω𝜔superscript𝜔\omega,\omega^{\prime}italic_ω , italic_ω start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT on \mathcal{M}caligraphic_M are approximately unitarily equivalent: uωuω𝑢𝜔superscript𝑢superscript𝜔u\omega u^{*}\approx\omega^{\prime}italic_u italic_ω italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≈ italic_ω start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, i.e., {\mathcal{M}}caligraphic_M has a homogeneous state space and must be of type III1.

Embezzlement and relativistic quantum fields.

In the algebraic approach to relativistic quantum field theory, one associates to every open region 𝒪𝒪{\mathcal{O}}caligraphic_O in spacetime a von Neumann algebra (𝒪)𝒪{\mathcal{M}}({\mathcal{O}})caligraphic_M ( caligraphic_O ) capturing the properties of quantum fields (localized in 𝒪𝒪{\mathcal{O}}caligraphic_O), e.g., operators representing the local field strength of the electromagnetic field. In the following, we give a brief overview of the operator-algebraic structure of QFT. All algebras act jointly irreducibly on a common separable Hilbert space \mathcal{H}caligraphic_H with the (unique) vacuum state described by a vector ΩΩ\Omega\in\mathcal{H}roman_Ω ∈ caligraphic_H. Local consistency is encoded by demanding that the local algebra of a region 𝒪A𝒪Bsubscript𝒪𝐴subscript𝒪𝐵{\mathcal{O}}_{A}\cup{\mathcal{O}}_{B}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ∪ caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT is generated by A=(𝒪A)subscript𝐴subscript𝒪𝐴\mathcal{M}_{A}={\mathcal{M}}({\mathcal{O}}_{A})caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = caligraphic_M ( caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) and B=(𝒪B)subscript𝐵subscript𝒪𝐵\mathcal{M}_{B}={\mathcal{M}}({\mathcal{O}}_{B})caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_M ( caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ), denoted by ABsubscript𝐴subscript𝐵{\mathcal{M}}_{A}\vee{\mathcal{M}}_{B}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ∨ caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT. Einstein locality (or causality) is implemented by the relative commutativity of local algebras Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT for spacelike separated regions 𝒪Asubscript𝒪𝐴{\mathcal{O}}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and 𝒪Bsubscript𝒪𝐵{\mathcal{O}}_{B}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT. Completeness of relativistic dynamics 222This is also sometimes called the Time-Slice Axiom. is realized by (𝒪′′)=(𝒪)superscript𝒪′′𝒪\mathcal{M}({\mathcal{O}}^{\prime\prime})=\mathcal{M}({\mathcal{O}})caligraphic_M ( caligraphic_O start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) = caligraphic_M ( caligraphic_O ), where 𝒪′′superscript𝒪′′{\mathcal{O}}^{\prime\prime}caligraphic_O start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT the causal completion (or Cauchy development) of 𝒪𝒪{\mathcal{O}}caligraphic_O.

Consider now an open set 𝒪Asubscript𝒪𝐴{\mathcal{O}}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and its causal complement 𝒪B=𝒪Asubscript𝒪𝐵superscriptsubscript𝒪𝐴{\mathcal{O}}_{B}={\mathcal{O}}_{A}^{\prime}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. For instance, 𝒪Asubscript𝒪𝐴{\mathcal{O}}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and 𝒪Bsubscript𝒪𝐵{\mathcal{O}}_{B}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT could be complementary wedges 𝒪A/B={xμ:|x0|<x1}subscript𝒪𝐴𝐵conditional-setsuperscript𝑥𝜇superscript𝑥0minus-or-plussuperscript𝑥1{\mathcal{O}}_{A/B}=\{x^{\mu}:|x^{0}|<\mp x^{1}\}caligraphic_O start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT = { italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT : | italic_x start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT | < ∓ italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT } in Minkowski space (see Fig. 2). Then, it is meaningful to consider {\mathcal{H}}caligraphic_H with Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT as a bipartite system, where Alice has access to the spacetime region 𝒪Asubscript𝒪𝐴{\mathcal{O}}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT, and Bob has access to the spacetime region 𝒪Bsubscript𝒪𝐵{\mathcal{O}}_{B}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT. In this setting, the Bisognano-Wichmann theorem [60] and the Reeh-Schlieder theorem [61, 62] guarantee that A=Bsuperscriptsubscript𝐴subscript𝐵{\mathcal{M}}_{A}^{\prime}={\mathcal{M}}_{B}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT (Haag duality).

Since our basic assumptions for embezzlement are fulfilled, we can ask how well the vacuum (or any other state) on =Asubscript𝐴\mathcal{M}=\mathcal{M}_{A}caligraphic_M = caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT performs at embezzling. By the above, this task amounts to determining the type of the von Neumann algebra \mathcal{M}caligraphic_M. This problem has been studied intensely before; see [62, 63] for an overview of results. It has been found under very general conditions, irrespective of whether the quantum fields are interacting or not, that the algebras (𝒪)𝒪\mathcal{M}({\mathcal{O}})caligraphic_M ( caligraphic_O ) have type III1, including the situation of so-called wedge algebras as considered above [64, 65, 66, 67, 68]. We conclude that relativistic quantum fields are universal embezzlers:

From any quantum state and any bipartition of Minkowski space as above, Alice and Bob can embezzle any finite-dimensional quantum state to any precision they desire.

Discussion and outlook.

It is often emphasized that the vacuum of relativistic quantum field theories is “infinitely entangled”. This infinite entanglement is difficult to interpret physically. As the classification of von Neumann algebras shows, there can be different types of “infinite entanglement,” but only type III1 allows for embezzlement from any state (see Tab. 1). Our result provides a direct operational and quantitative charaterization of the fact that the local algebras of relativistic quantum field theories are of type III1. As mentioned in the introduction, it has long been known that the vacuum of a relativistic quantum field can be used to violate Bell inequalities arbitrarily well. Our result makes transparent why this is the case: Alice and Bob could simply embezzle a spin-1/2 Bell state and then apply a Bell test [69, 70].

Refer to caption
Figure 2: Embezzling from Quantum Fields. a) Left: The spacetime region accessible to an observer between two events A,B𝐴𝐵A,Bitalic_A , italic_B on his worldline. Right: The causal closure 𝒪′′superscript𝒪′′\mathcal{O}^{\prime\prime}caligraphic_O start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT of some open subset 𝒪𝒪\mathcal{O}caligraphic_O of spacetime. b) Penrose diagram of Minkowski space. Alice and Bob have access to the left wedge 𝒪Asubscript𝒪𝐴\mathcal{O}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and the right wedge 𝒪B=𝒪Asubscript𝒪𝐵superscriptsubscript𝒪𝐴\mathcal{O}_{B}=\mathcal{O}_{A}^{\prime}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, respectively. The curved horizontal line corresponds to an equal-time slice.

A natural question is whether the embezzlement quantifier κ(ω)𝜅𝜔\kappa(\omega)italic_κ ( italic_ω ) is monotone under local operations and classical communication (LOCC). This question is nontrivial only if κ𝜅\kappaitalic_κ can take on different values, requiring {\mathcal{M}}caligraphic_M to have type IIIIII\mathrm{III}roman_III (see Tab. 1). Surprisingly, under an LOCC paradigm for general von Neumann algebras [41], all pure states are equivalent in the type IIIIII\mathrm{III}roman_III case, implying that κ𝜅\kappaitalic_κ cannot be monotone. We caution that these results need to be taken with a grain of salt when applied to quantum field theory as it is a currently much-debated issue how to properly make sense of general local operations [71].

A concern regarding quantum fields is the localizability of the unitaries applied by Alice and Bob. In our discussion, Alice and Bob seem to require access to their whole patches of spacetime to embezzle arbitrary quantum states. However, for any finite error ε𝜀\varepsilonitalic_ε in (2), Alice and Bob only need to act on finite regions, which can moreover be properly space-like separated. As ε0𝜀0\varepsilon\rightarrow 0italic_ε → 0, the regions grow, and their separation decreases. See the End Matter and [40] for a detailed explanation. The split property of quantum field theory shows that the infinite amount of entanglement in quantum fields is localized at the boundary between two regions of spacetime [72, 73, 74]. This suggests that Alice and Bob may, in fact, only have to act close to their common boundary to embezzle quantum states [21]. Proving this will require more specific properties of quantum fields than the general treatment given here. It would also be interesting to see explicitly worked-out unitaries in a free field. We leave these problems open for the future.

It has recently been argued that, in the presence of gravitation, local algebras of observables are of type II instead of type III1. Specifically, type II was found outside of a blackhole horizon [75] for the observables of a single observer, while II1 was found for static de-Sitter patches [76] (see also [77, 78]) – both for single observers and for certain bipartite situations involving spacelike separated observers. As a consequence, gravitation might not only disable universal embezzlement but even prohibit the existence of embezzlers altogether, rendering the possibility of embezzlement a distinguishing feature between ordinary relativistic quantum field theory and potential theories of quantum gravity. In [41], we have studied pure state entanglement for general factors to clarify the differences pertaining to the various types.

Our work also provides an operational motivation for studying the different classes of infinite entanglement arising in ground states of quantum many-body systems (see [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] for some prior results). In [39], we have shown that ground state sectors of one-dimensional, translation-invariant, critical, quasi-free fermion systems and their associated spin chains are universal embezzlers, showing that embezzlement naturally appears in many-body physics. Additionally, we identified a criterion providing a one-to-one correspondence between embezzling families and embezzling states that extends to the multipartite setting in [40]. This criterion connects the embezzling capabilities of many-body ground states in finite volume to those of various limiting situations, e.g., infinite-volume or scaling limits [91, 92]. Finally, in [40], we also constructed the first multipartite embezzling state. The construction raises the interesting question of whether vacua of relativistic quantum fields or ground states of quantum many-body systems can also be multipartite embezzlers.

Acknowledgements.
Acknowledgments. This work was motivated by unfinished prior work of RFW together with Volkher Scholz and Uffe Haagerup. We thank Marius Junge, Roberto Longo, Yoh Tanimoto, and Rainer Verch for useful discussions. LvL and AS have been funded by the MWK Lower Saxony via the Stay Inspired Program (Grant ID: 15-76251-2-Stay-9/22-16583/2022).

References


I End Matter

Quantum information and von Neumann algebras.

As explained in the main text, the mathematical description of physical systems with infinitely many degrees often requires an algebraic approach. The role of the observable algebra, in traditional quantum mechanics the algebra (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ) of all bounded operators on a Hilbert space {\mathcal{H}}caligraphic_H, is taken over by a more general von Neumann algebra {\mathcal{M}}caligraphic_M (for a general introduction, see [93], and [94] from a mathematical physics point of view). The observables, in Quantum Information only required to be positive operator-valued measures, then are positive {\mathcal{M}}caligraphic_M-valued measures. There are two ways to define von Neumann algebras [95]: The first takes them concretely as subalgebras of (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ) for some Hilbert space {\mathcal{H}}caligraphic_H, which are closed in the weak operator topology (defined as the topology making matrix elements Aϕ|A|ψmaps-to𝐴quantum-operator-productitalic-ϕ𝐴𝜓A\mapsto\langle\phi|A|\psi\rangleitalic_A ↦ ⟨ italic_ϕ | italic_A | italic_ψ ⟩ continuous). This view arises naturally when the system under consideration is a subsystem of a standard quantum system with observable (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ). The second definition is more abstract, namely as an algebra with adjoint operation and norm satisfying aa=a2delimited-∥∥superscript𝑎𝑎superscriptdelimited-∥∥𝑎2\lVert a^{*}a\rVert=\lVert a\rVert^{2}∥ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a ∥ = ∥ italic_a ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (i.e., a so-called C*-algebra) which, as a normed space, is the dual of some Banach space subscript{\mathcal{M}}_{*}caligraphic_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. These definitions are equivalent in that every algebra satisfying the abstract definition is isomorphic to one of the concrete sort. The link between these is the notion of normal states: In the concrete case, these are the states (probability functionals) arising as the trace with a density operator. In the abstract case, these are the probability functionals defined by the pre-dual subscript{\mathcal{M}}_{*}caligraphic_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, also characterized as the states which are continuous under limits of increasing bounded nets in {\mathcal{M}}caligraphic_M. Intuitively, normal states are those that can be prepared relatively easily, for example, requiring only finite energy. For example, in ordinary quantum mechanics, states with sharp, pointlike position distribution require infinite momentum and, hence, infinite kinetic energy. Accordingly, all normal states (density operators) produce position distributions, which have a density with respect to the Lebesgue measure.

Given two von Neumann algebras Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT contained in an ambient system with observable algebra (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ), the condition that all observables of Asubscript𝐴\mathcal{M}_{A}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT can be measured jointly with all those of Bsubscript𝐵\mathcal{M}_{B}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, is equivalent to the vanishing of all commutators [a,b]=0𝑎𝑏0[a,b]=0[ italic_a , italic_b ] = 0 for aA𝑎subscript𝐴a\in\mathcal{M}_{A}italic_a ∈ caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and bB𝑏subscript𝐵b\in\mathcal{M}_{B}italic_b ∈ caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, i.e., we are in the commuting operator framework described in the text. A compact notation for this is BAsubscript𝐵superscriptsubscript𝐴\mathcal{M}_{B}\subset\mathcal{M}_{A}^{\prime}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ⊂ caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, which uses the commutant ={x()|r[x,r]=0}superscriptconditional-set𝑥subscriptfor-all𝑟𝑥𝑟0\mathcal{R}^{\prime}=\{x\in{\mathcal{B}}({\mathcal{H}})|\forall_{r\in\mathcal{% R}}[x,r]=0\}caligraphic_R start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { italic_x ∈ caligraphic_B ( caligraphic_H ) | ∀ start_POSTSUBSCRIPT italic_r ∈ caligraphic_R end_POSTSUBSCRIPT [ italic_x , italic_r ] = 0 } for a subset ()\mathcal{R}\subset{\mathcal{B}}({\mathcal{H}})caligraphic_R ⊂ caligraphic_B ( caligraphic_H ). The center of a von Neumann algebra \mathcal{M}caligraphic_M is superscript{\mathcal{M}}\cap{\mathcal{M}}^{\prime}caligraphic_M ∩ caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and is the classical subsystem consisting of those observables, which can be measured together with all others or, equivalently, essentially without disturbance. If the classical part is trivial, i.e., =1superscript1{\mathcal{M}}\cap{\mathcal{M}}^{\prime}={\mathbb{C}}\text{1}caligraphic_M ∩ caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = blackboard_C 1, one calls {\mathcal{M}}caligraphic_M a factor, or purely quantum. In adversarial contexts, e.g., in cryptography, it is assumed that the adversary, e.g., the eavesdropper, can measure everything that can possibly be measured without disturbing the system. That is, we assume that her observable algebra is superscript{\mathcal{M}}^{\prime}caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. This results in bipartite systems with A=subscript𝐴{\mathcal{M}}_{A}={\mathcal{M}}caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = caligraphic_M and B=subscript𝐵superscript{\mathcal{M}}_{B}={\mathcal{M}}^{\prime}caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, which are assumed above. That this is a symmetric relation between A𝐴Aitalic_A and B𝐵Bitalic_B follows from von Neumann’s “Bicommutant Theorem”: Each von Neumann algebra (){\mathcal{M}}\subset{\mathcal{B}}({\mathcal{H}})caligraphic_M ⊂ caligraphic_B ( caligraphic_H ) is equal to its second commutant ′′:=()=assignsuperscript′′superscriptsuperscript{\mathcal{M}}^{\prime\prime}:=({\mathcal{M}}^{\prime})^{\prime}={\mathcal{M}}caligraphic_M start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT := ( caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = caligraphic_M. In this sense, the commutant is a complement for factors: {\mathcal{M}}caligraphic_M and superscript{\mathcal{M}}^{\prime}caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT have trivial intersection, but together generate the ambient system (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ).

When (){\mathcal{M}}\subset{\mathcal{B}}({\mathcal{H}})caligraphic_M ⊂ caligraphic_B ( caligraphic_H ) is a factor, operations that are local to this subsystem can be characterized by the condition that they have an extension to (){\mathcal{B}}({\mathcal{H}})caligraphic_B ( caligraphic_H ) which maps normal states to normal states and leaves the commutant superscript{\mathcal{M}}^{\prime}caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, i.e., the observables of a potential adversary, invariant. This is equivalent to a Kraus form aikiakimaps-to𝑎subscript𝑖superscriptsubscript𝑘𝑖𝑎subscript𝑘𝑖a\mapsto\sum_{i}k_{i}^{*}ak_{i}italic_a ↦ ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with kisubscript𝑘𝑖k_{i}\in{\mathcal{M}}italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_M. Again, equivalently, we can implement the operation on the whole system by coupling it to an ancilla with a tensor product, engineering an interaction using only operators from {\mathcal{M}}caligraphic_M and the ancilla, and tracing out the ancilla. Reversible local operations are thus implemented as auaumaps-to𝑎superscript𝑢𝑎𝑢a\mapsto u^{*}auitalic_a ↦ italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a italic_u with unitaries u𝑢u\in{\mathcal{M}}italic_u ∈ caligraphic_M. This form is used in the main text.

In general, a physical system can have both classical and quantum degrees of freedom. This is reflected by the fact that the von Neumann algebra {\mathcal{M}}caligraphic_M decomposes (uniquely) as a direct integral =Γγ𝑑μ(γ)subscriptsuperscriptdirect-sumΓsubscript𝛾differential-d𝜇𝛾{\mathcal{M}}=\int^{\oplus}_{\Gamma}{\mathcal{M}}_{\gamma}\,d\mu(\gamma)caligraphic_M = ∫ start_POSTSUPERSCRIPT ⊕ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT caligraphic_M start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT italic_d italic_μ ( italic_γ ) of factors γsubscript𝛾{\mathcal{M}}_{\gamma}caligraphic_M start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT (describing purely quantum systems), over its center (describing all classical degrees of freedom) =L(Γ,dμ)superscriptsuperscript𝐿Γ𝑑𝜇{\mathcal{M}}\cap{\mathcal{M}}^{\prime}=L^{\infty}(\Gamma,d\mu)caligraphic_M ∩ caligraphic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( roman_Γ , italic_d italic_μ ) [93, Sec. IV.8]. Thus, understanding the different observable algebras appearing in physical systems amounts to a mathematical classification of all possible factors. Essentially all factors appearing in physics are ‘approximately finite-dimensional’, and these have been classified by the collected works of many (in particular, Connes [51] and Haagerup [96]). Factors come in three types, surprisingly called I, II, and III. Type I factors are finite or infinite matrix algebras describing “ordinary quantum mechanics”. Types II and III are more wild objects describing systems in many-body physics and field theories. Type III factors, playing an important role in the main text, are classified into subtypes IIIλ, 0λ10𝜆10\leq\lambda\leq 10 ≤ italic_λ ≤ 1. In the following, we give concrete examples of factors arising in physics:

We consider the spin-chain C*-algebra M2()subscripttensor-productsubscript𝑀2\bigotimes_{{\mathbb{Z}}}M_{2}({\mathbb{C}})⨂ start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_C ), which will naturally give rise to a bipartite system if split into half-chain algebras 𝒜=M2()𝒜subscripttensor-productsubscript𝑀2{\mathcal{A}}=\bigotimes_{{\mathbb{Z}}\setminus{\mathbb{N}}}M_{2}({\mathbb{C}})caligraphic_A = ⨂ start_POSTSUBSCRIPT blackboard_Z ∖ blackboard_N end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_C ) and =M2()subscripttensor-productsubscript𝑀2{\mathcal{B}}=\bigotimes_{{\mathbb{N}}}M_{2}({\mathbb{C}})caligraphic_B = ⨂ start_POSTSUBSCRIPT blackboard_N end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_C ). The various types of factors arise from simple product state constructions for spin chains (so-called Powers and Araki-Woods factors [97, 98]). On the full spin chain, we consider the (bipartite) pure states

|ΩλketsubscriptΩ𝜆\displaystyle|\Omega_{\lambda}\rangle| roman_Ω start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ⟩ =j=111+λj(|1j+1|1j+λj|2j+1|2j),absentsuperscriptsubscripttensor-product𝑗111subscript𝜆𝑗tensor-productsubscriptket1𝑗1subscriptket1𝑗tensor-productsubscript𝜆𝑗subscriptket2𝑗1subscriptket2𝑗\displaystyle\!\!=\!\!\bigotimes_{j=1}^{\infty}\!\tfrac{1}{\sqrt{1+\lambda_{j}% }}\!\Big{(}\!|1\rangle_{\!-j+1}\!\!\otimes\!|1\rangle_{\!j}\!+\!\!\sqrt{\!% \lambda_{j}}|2\rangle_{\!-j+1}\!\!\otimes\!|2\rangle_{\!j}\!\Big{)},= ⨂ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG square-root start_ARG 1 + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG end_ARG ( | 1 ⟩ start_POSTSUBSCRIPT - italic_j + 1 end_POSTSUBSCRIPT ⊗ | 1 ⟩ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + square-root start_ARG italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG | 2 ⟩ start_POSTSUBSCRIPT - italic_j + 1 end_POSTSUBSCRIPT ⊗ | 2 ⟩ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , (9)

where λj[0,1]subscript𝜆𝑗01\lambda_{j}\in[0,1]italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ [ 0 , 1 ] and |kjsubscriptket𝑘𝑗|k\rangle_{j}| italic_k ⟩ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT refers to the k𝑘kitalic_kth standard basis vector at site j𝑗jitalic_j. It is known that the reduced states ωλ|𝒜/=Ωλ|()𝒜/|Ωλevaluated-atsubscript𝜔𝜆𝒜quantum-operator-productsubscriptΩ𝜆subscript𝒜subscriptΩ𝜆\omega_{\lambda}|_{{\mathcal{A}}/{\mathcal{B}}}=\langle\Omega_{\lambda}|({\,% \cdot\,})_{{\mathcal{A}}/{\mathcal{B}}}|\Omega_{\lambda}\rangleitalic_ω start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_A / caligraphic_B end_POSTSUBSCRIPT = ⟨ roman_Ω start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT | ( ⋅ ) start_POSTSUBSCRIPT caligraphic_A / caligraphic_B end_POSTSUBSCRIPT | roman_Ω start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ⟩ give rise to factors, A/B=πωλ(𝒜/)′′subscript𝐴𝐵subscript𝜋subscript𝜔𝜆superscript𝒜′′{\mathcal{M}}_{A/B}=\pi_{\omega_{\lambda}}({\mathcal{A}}/{\mathcal{B}})^{% \prime\prime}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT = italic_π start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( caligraphic_A / caligraphic_B ) start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT, of all possible types, depending on local Schmidt spectra λjsubscript𝜆𝑗\lambda_{j}italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT. For a complete statement about the various types, we refer to the seminal paper of Araki and Woods [98]. For the specific case that the local Schmidt spectra are constant along the chain, i.e., λj=λsubscript𝜆𝑗𝜆\lambda_{j}=\lambdaitalic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_λ, the resulting types of factors are as follows: A/Bsubscript𝐴𝐵{\mathcal{M}}_{A/B}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT is of type IsubscriptI\mathrm{I}_{\infty}roman_I start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT if λ=0𝜆0\lambda=0italic_λ = 0, of type II1subscriptII1\mathrm{II}_{1}roman_II start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT if λ=1𝜆1\lambda=1italic_λ = 1, and of type IIIλsubscriptIII𝜆\mathrm{III}_{\lambda}roman_III start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT else.

Another physically motivated example is given by the ground state |Ω(γ,h)ketsubscriptΩ𝛾|\Omega_{(\gamma,h)}\rangle| roman_Ω start_POSTSUBSCRIPT ( italic_γ , italic_h ) end_POSTSUBSCRIPT ⟩ of the XY𝑋𝑌XYitalic_X italic_Y Hamiltonian

H𝐻\displaystyle Hitalic_H =j(1+γ2σjxσj+1x+1γ2σjyσj+1y+hσjz),absentsubscript𝑗1𝛾2subscriptsuperscript𝜎𝑥𝑗subscriptsuperscript𝜎𝑥𝑗11𝛾2subscriptsuperscript𝜎𝑦𝑗subscriptsuperscript𝜎𝑦𝑗1subscriptsuperscript𝜎𝑧𝑗\displaystyle\!=\!-\!\sum_{j\in{\mathbb{Z}}}\!\big{(}\!\tfrac{1+\gamma}{2}% \sigma^{x}_{\!j}\sigma^{x}_{\!j+1}\!+\!\tfrac{1-\gamma}{2}\sigma^{y}_{\!j}% \sigma^{y}_{\!j+1}\!+\!h\sigma^{z}_{\!j}\big{)},= - ∑ start_POSTSUBSCRIPT italic_j ∈ blackboard_Z end_POSTSUBSCRIPT ( divide start_ARG 1 + italic_γ end_ARG start_ARG 2 end_ARG italic_σ start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT + divide start_ARG 1 - italic_γ end_ARG start_ARG 2 end_ARG italic_σ start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT + italic_h italic_σ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , (10)

with transverse magnetic field hhitalic_h and anisotropy γ𝛾\gammaitalic_γ. In the isotropic case, γ=0𝛾0\gamma=0italic_γ = 0, with sufficiently small magnetic field |h|<11|h|<1| italic_h | < 1, the half-chain von Neumann algebras are of type III1subscriptIII1\mathrm{III}_{1}roman_III start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [79, 81, 39].

Localization of embezzlement in quantum field theory.

We explain why Alice and Bob can localize their embezzling unitaries uAAsubscript𝑢𝐴superscript𝐴u_{AA^{\prime}}italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and uBBsubscript𝑢𝐵superscript𝐵u_{BB^{\prime}}italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, respectively, in the quantum field theory setting discussed in the main text (abstract versions of this argument are given in [39, 40]).

We consider the bipartite system where Alice and Bob control the von Neumann algebras A=(𝒪A)subscript𝐴subscript𝒪𝐴{\mathcal{M}}_{A}={\mathcal{M}}({\mathcal{O}}_{A})caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = caligraphic_M ( caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) and B=(𝒪B)subscript𝐵subscript𝒪𝐵{\mathcal{M}}_{B}={\mathcal{M}}({\mathcal{O}}_{B})caligraphic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_M ( caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) associated with complementary wedges 𝒪A/B={xμ:|x0|<x1}subscript𝒪𝐴𝐵conditional-setsuperscript𝑥𝜇superscript𝑥0minus-or-plussuperscript𝑥1{\mathcal{O}}_{A/B}=\{x^{\mu}:|x^{0}|<\mp x^{1}\}caligraphic_O start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT = { italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT : | italic_x start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT | < ∓ italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT } in Minkowski space (see Fig. 2). We may generate the algebras A/Bsubscript𝐴𝐵{\mathcal{M}}_{A/B}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT of the full wedges by increasing families of the local algebras A/B(δ)=(𝒪A/B(δ))subscriptsuperscript𝛿𝐴𝐵superscriptsubscript𝒪𝐴𝐵𝛿{\mathcal{M}}^{(\delta)}_{A/B}={\mathcal{M}}({\mathcal{O}}_{A/B}^{(\delta)})caligraphic_M start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT = caligraphic_M ( caligraphic_O start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT ) of causal diamonds such that 𝒪A(δ)superscriptsubscript𝒪𝐴𝛿{\mathcal{O}}_{A}^{(\delta)}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT and 𝒪B(δ)superscriptsubscript𝒪𝐵𝛿{\mathcal{O}}_{B}^{(\delta)}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT are spacelike separated on the order of some length scale δ𝛿\deltaitalic_δ. At the same time, each diamond has a base A/B(δ)superscriptsubscript𝐴𝐵𝛿{\mathcal{B}}_{A/B}^{(\delta)}caligraphic_B start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT with a diameter of the order δ1superscript𝛿1\delta^{-1}italic_δ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (see Fig. 3):

A/Bsubscript𝐴𝐵\displaystyle{\mathcal{M}}_{A/B}caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT =(δ>0A/B(δ))′′.absentsuperscriptsubscript𝛿0superscriptsubscript𝐴𝐵𝛿′′\displaystyle=\Big{(}\bigcup_{\delta>0}{\mathcal{M}}_{A/B}^{(\delta)}\Big{)}^{% \prime\prime}.= ( ⋃ start_POSTSUBSCRIPT italic_δ > 0 end_POSTSUBSCRIPT caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT . (11)

Concretely, we may choose causal diamonds over spatial bases A/B(δ)={x:(x1δ)2+(x2)2+(x3)2=δ2}superscriptsubscript𝐴𝐵𝛿conditional-set𝑥superscriptminus-or-plussuperscript𝑥1𝛿2superscriptsuperscript𝑥22superscriptsuperscript𝑥32superscript𝛿2{{\mathcal{B}}_{A/B}^{(\delta)}=\{\vec{x}:(x^{1}\!\mp\!\delta)^{2}\!+\!(x^{2})% ^{2}\!+\!(x^{3})^{2}\!=\!\delta^{-2}\}}caligraphic_B start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT = { over→ start_ARG italic_x end_ARG : ( italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∓ italic_δ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_δ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT } in the time-zero plane (see Fig. 3). It is a general fact that any unitary in 𝒰(A/B(𝒦A/B))𝒰tensor-productsubscript𝐴𝐵subscript𝒦superscript𝐴superscript𝐵{\mathcal{U}}({\mathcal{M}}_{A/B}\otimes{\mathcal{B}}({\mathcal{K}}_{A^{\prime% }/B^{\prime}}))caligraphic_U ( caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) ) can be approximated (in the strong* topology) by unitaries in δ(0,1](A/B(δ)(𝒦A/B))subscript𝛿01tensor-productsuperscriptsubscript𝐴𝐵𝛿subscript𝒦superscript𝐴superscript𝐵\bigcup_{\delta\in(0,1]}({\mathcal{M}}_{A/B}^{(\delta)}\otimes{\mathcal{B}}({% \mathcal{K}}_{A^{\prime}/B^{\prime}}))⋃ start_POSTSUBSCRIPT italic_δ ∈ ( 0 , 1 ] end_POSTSUBSCRIPT ( caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) ) (see [40, Lem. 19]). Now, given an error ε>0𝜀0\varepsilon>0italic_ε > 0, initial and final states |Ψ,|Φ𝒦A𝒦B=𝒦ketΨketΦtensor-productsubscript𝒦superscript𝐴subscript𝒦superscript𝐵𝒦|\Psi\rangle,|\Phi\rangle\in{\mathcal{K}}_{A^{\prime}}\otimes{\mathcal{K}}_{B^% {\prime}}={\mathcal{K}}| roman_Ψ ⟩ , | roman_Φ ⟩ ∈ caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ⊗ caligraphic_K start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = caligraphic_K and embezzling unitaries uAAsubscript𝑢𝐴superscript𝐴u_{AA^{\prime}}italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and uBBsubscript𝑢𝐵superscript𝐵u_{BB^{\prime}}italic_u start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT such that Eq. 2 holds (with ε3𝜀3\tfrac{\varepsilon}{3}divide start_ARG italic_ε end_ARG start_ARG 3 end_ARG), we can find (δ𝛿\deltaitalic_δ-local) approximations uAA/BB(δ)A/B(δ)(𝒦A/B)subscriptsuperscript𝑢𝛿𝐴superscript𝐴𝐵superscript𝐵tensor-productsuperscriptsubscript𝐴𝐵𝛿subscript𝒦superscript𝐴superscript𝐵u^{(\delta)}_{AA^{\prime}/BB^{\prime}}\in{\mathcal{M}}_{A/B}^{(\delta)}\otimes% {\mathcal{B}}({\mathcal{K}}_{A^{\prime}/B^{\prime}})italic_u start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT italic_A / italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT ⊗ caligraphic_B ( caligraphic_K start_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) such that (uAA/BB(δ)uAA/BB)|Ω|Φ<ε3delimited-∥∥tensor-productsubscriptsuperscript𝑢𝛿𝐴superscript𝐴𝐵superscript𝐵subscript𝑢𝐴superscript𝐴𝐵superscript𝐵ketΩketΦ𝜀3\lVert(u^{(\delta)}_{AA^{\prime}/BB^{\prime}}-u_{AA^{\prime}/BB^{\prime}})|% \Omega\rangle\otimes|\Phi\rangle\rVert<\tfrac{\varepsilon}{3}∥ ( italic_u start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) | roman_Ω ⟩ ⊗ | roman_Φ ⟩ ∥ < divide start_ARG italic_ε end_ARG start_ARG 3 end_ARG entailing

uAA(δ)uBB(δ)|Ω|Φ|Ω|Ψdelimited-∥∥tensor-productsubscriptsuperscript𝑢𝛿𝐴superscript𝐴subscriptsuperscript𝑢𝛿𝐵superscript𝐵ketΩketΦtensor-productketΩketΨ\displaystyle\lVert u^{(\delta)}_{AA^{\prime}}u^{(\delta)}_{BB^{\prime}}|% \Omega\rangle\otimes|\Phi\rangle-|\Omega\rangle\otimes|\Psi\rangle\rVert∥ italic_u start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_A italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_B italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT | roman_Ω ⟩ ⊗ | roman_Φ ⟩ - | roman_Ω ⟩ ⊗ | roman_Ψ ⟩ ∥ <ε,absent𝜀\displaystyle<\varepsilon,< italic_ε , (12)

for sufficiently small 0<δ0𝛿0<\delta0 < italic_δ. Note that δ𝛿\deltaitalic_δ only depends on ε𝜀\varepsilonitalic_ε and the dimension of 𝒦𝒦{\mathcal{K}}caligraphic_K. Thus, Alice and Bob may localize their embezzling unitaries for a fixed error threshold and given initial and final states.

Refer to caption
Figure 3: Localized Embezzlement from Quantum Fields. A Penrose diagram of Minkowski space. Alice and Bob have access to the left wedge 𝒪Asubscript𝒪𝐴\mathcal{O}_{A}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and the right wedge 𝒪B=𝒪Asubscript𝒪𝐵superscriptsubscript𝒪𝐴\mathcal{O}_{B}=\mathcal{O}_{A}^{\prime}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, respectively. The curved horizontal line corresponds to an equal-time slice. 𝒪A(δ)superscriptsubscript𝒪𝐴𝛿{\mathcal{O}}_{A}^{(\delta)}caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT and 𝒪B(δ)superscriptsubscript𝒪𝐵𝛿{\mathcal{O}}_{B}^{(\delta)}caligraphic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_δ ) end_POSTSUPERSCRIPT are δ𝛿\deltaitalic_δ-local observable algebras that allow for embezzling given initial and final states up to some fixed error threshold ε=ε(δ)>0𝜀𝜀𝛿0\varepsilon=\varepsilon(\delta)>0italic_ε = italic_ε ( italic_δ ) > 0.