Quantum Physics
[Submitted on 2 Jun 2013 (v1), last revised 7 Jun 2013 (this version, v2)]
Title:The Ghost in the Quantum Turing Machine
View PDFAbstract:In honor of Alan Turing's hundredth birthday, I unwisely set out some thoughts about one of Turing's obsessions throughout his life, the question of physics and free will. I focus relatively narrowly on a notion that I call "Knightian freedom": a certain kind of in-principle physical unpredictability that goes beyond probabilistic unpredictability. Other, more metaphysical aspects of free will I regard as possibly outside the scope of science. I examine a viewpoint, suggested independently by Carl Hoefer, Cristi Stoica, and even Turing himself, that tries to find scope for "freedom" in the universe's boundary conditions rather than in the dynamical laws. Taking this viewpoint seriously leads to many interesting conceptual problems. I investigate how far one can go toward solving those problems, and along the way, encounter (among other things) the No-Cloning Theorem, the measurement problem, decoherence, chaos, the arrow of time, the holographic principle, Newcomb's paradox, Boltzmann brains, algorithmic information theory, and the Common Prior Assumption. I also compare the viewpoint explored here to the more radical speculations of Roger Penrose. The result of all this is an unusual perspective on time, quantum mechanics, and causation, of which I myself remain skeptical, but which has several appealing features. Among other things, it suggests interesting empirical questions in neuroscience, physics, and cosmology; and takes a millennia-old philosophical debate into some underexplored territory.
Submission history
From: Scott Aaronson [view email][v1] Sun, 2 Jun 2013 00:36:34 UTC (533 KB)
[v2] Fri, 7 Jun 2013 16:52:29 UTC (533 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.