Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > quant-ph > arXiv:2411.11708

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Quantum Physics

arXiv:2411.11708 (quant-ph)
[Submitted on 18 Nov 2024 (v1), last revised 2 Dec 2024 (this version, v2)]

Title:High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit

Authors:J. A. Muniz, M. Stone, D. T. Stack, M. Jaffe, J. M. Kindem, L. Wadleigh, E. Zalys-Geller, X. Zhang, C.-A. Chen, M. A. Norcia, J. Epstein, E. Halperin, F. Hummel, T. Wilkason, M. Li, K. Barnes, P. Battaglino, T. C. Bohdanowicz, G. Booth, A. Brown, M. O. Brown, W. B. Cairncross, K. Cassella, R. Coxe, D. Crow, M. Feldkamp, C. Griger, A. Heinz, A. M. W. Jones, H. Kim, J. King, K. Kotru, J. Lauigan, J. Marjanovic, E. Megidish, M. Meredith, M. McDonald, R. Morshead, S. Narayanaswami, C. Nishiguchi, T. Paule, K. A. Pawlak, K. L. Pudenz, D. Rodríguez Pérez, A. Ryou, J. Simon, A. Smull, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro, T.-Y. Wu, X. Xie, B. J. Bloom
View a PDF of the paper titled High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit, by J. A. Muniz and 52 other authors
View PDF HTML (experimental)
Abstract:Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate-set with individually controlled and parallel application of single-qubit gates and two-qubit gates operating on the ground-state nuclear spin qubit in arrays of tweezer-trapped $^{171}$Yb atoms. We utilize the long lifetime, flexible control, and high physical fidelity of our system to characterize native gates using single and two-qubit Clifford and symmetric subspace randomized benchmarking circuits with more than 200 CZ gates applied to one or two pairs of atoms. We measure our two-qubit entangling gate fidelity to be 99.72(3)% (99.40(3)%) with (without) post-selection. In addition, we introduce a simple and optimized method for calibration of multi-parameter quantum gates. These results represent important milestones towards executing complex and general quantum computation with neutral atoms.
Subjects: Quantum Physics (quant-ph); Atomic Physics (physics.atom-ph)
Cite as: arXiv:2411.11708 [quant-ph]
  (or arXiv:2411.11708v2 [quant-ph] for this version)
  https://doi.org/10.48550/arXiv.2411.11708
arXiv-issued DOI via DataCite

Submission history

From: Juan Andres Muniz Silva [view email]
[v1] Mon, 18 Nov 2024 16:36:32 UTC (389 KB)
[v2] Mon, 2 Dec 2024 16:12:33 UTC (395 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit, by J. A. Muniz and 52 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
quant-ph
< prev   |   next >
new | recent | 2024-11
Change to browse by:
physics
physics.atom-ph

References & Citations

  • INSPIRE HEP
  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack