Mathematics > Combinatorics
[Submitted on 12 Jan 2021 (v1), last revised 25 Jan 2023 (this version, v3)]
Title:A proof of the Erdős-Faber-Lovász conjecture
View PDFAbstract:The Erdős-Faber-Lovász conjecture (posed in 1972) states that the chromatic index of any linear hypergraph on $n$ vertices is at most $n$. In this paper, we prove this conjecture for every large $n$. We also provide stability versions of this result, which confirm a prediction of Kahn.
Submission history
From: Thomas Kelly [view email][v1] Tue, 12 Jan 2021 19:01:02 UTC (119 KB)
[v2] Fri, 9 Jul 2021 16:28:23 UTC (120 KB)
[v3] Wed, 25 Jan 2023 15:33:19 UTC (84 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.