Quantum Physics
[Submitted on 26 Jan 2021 (v1), last revised 27 Dec 2021 (this version, v2)]
Title:Quantum theory based on real numbers can be experimentally falsified
View PDFAbstract:While complex numbers are essential in mathematics, they are not needed to describe physical experiments, expressed in terms of probabilities, hence real numbers. Physics however aims to explain, rather than describe, experiments through theories. While most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces. This has puzzled countless physicists, including the fathers of the theory, for whom a real version of quantum theory, in terms of real operators, seemed much more natural. In fact, previous works showed that such "real quantum theory" can reproduce the outcomes of any multipartite experiment, as long as the parts share arbitrary real quantum states. Thus, are complex numbers really needed in the quantum formalism? Here, we show this to be case by proving that real and complex quantum theory make different predictions in network scenarios comprising independent states and measurements. This allows us to devise a Bell-like experiment whose successful realization would disprove real quantum theory, in the same way as standard Bell experiments disproved local physics.
Submission history
From: Miguel Navascues [view email][v1] Tue, 26 Jan 2021 15:25:39 UTC (82 KB)
[v2] Mon, 27 Dec 2021 17:26:36 UTC (94 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.