Computer Science > Data Structures and Algorithms
[Submitted on 1 Mar 2022 (v1), last revised 22 Apr 2022 (this version, v2)]
Title:Maximum Flow and Minimum-Cost Flow in Almost-Linear Time
View PDFAbstract:We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with $m$ edges and polynomially bounded integral demands, costs, and capacities in $m^{1+o(1)}$ time. Our algorithm builds the flow through a sequence of $m^{1+o(1)}$ approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized $m^{o(1)}$ time using a new dynamic graph data structure.
Our framework extends to algorithms running in $m^{1+o(1)}$ time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, $p$-norm flows, and $p$-norm isotonic regression on arbitrary directed acyclic graphs.
Submission history
From: Li Chen [view email][v1] Tue, 1 Mar 2022 18:45:57 UTC (133 KB)
[v2] Fri, 22 Apr 2022 18:35:20 UTC (1,755 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.