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Grover’s algorithm is one of the primary algorithms offered as evidence that quantum computers
can provide an advantage over classical computers. It involves an “oracle” (external quantum
subroutine) which must be specified for a given application and whose internal structure is not part
of the formal scaling of the quantum speedup guaranteed by the algorithm. Grover’s algorithm also
requires exponentially many steps to succeed, raising the question of its implementation on near-
term, non-error-corrected hardware and indeed even on error-corrected quantum computers. In this
work, we construct a quantum inspired algorithm, executable on a classical computer, that performs
Grovers’ task in a linear number of call to the oracle — an exponentially smaller number than
Grover’s algorithm — and demonstrate this algorithm explicitly for boolean satisfiability problems
(3-SAT). Our finding implies that there is no a priori theoretical quantum speed-up associated
with Grover’s algorithm. We critically examine the possibility of a practical speed-up, a possibility
that depends on the nature of the quantum circuit associated with the oracle. We argue that the
unfavorable scaling of the success probability of Grover’s algorithm, which in the presence of noise
decays as the exponential of the exponential of the number of qubits, makes a practical speedup
unrealistic even under extremely optimistic assumptions on both hardware quality and availability.

I. INTRODUCTION

Two classes of algorithms dominate the landscape of
possible applications for quantum computing. The first
class computes a non-trivial result then extracts this re-
sult using the quantum Fourier transform. This class
includes the seminal Shor’s algorithm for integer fac-
torization [1–3] as well as the quantum phase estima-
tion algorithm [3] proposed for solving quantum chem-
istry problems and several other algorithms [4]. Some of
these algorithms, in particular Shor’s, offer an exponen-
tial speedup over any known classical methods, though
only for a handful of rather specific applications.

The second class includes Grover’s algorithm (GA) and
its generalizations, such as amplitude amplification [5–7].
Grover’s algorithm promises a less spectacular quadratic
speedup, but in return enjoys wide popularity due to
its many possible use cases. Theoretically, quite a large
number of problems could be accelerated by simply re-
placing the critical part of the classical algorithm by a call
to a Grover’s routine implemented on a quantum com-
puter. It is also appealing that the quadratic speedup
of Grover’s algorithm can be put on firm mathematical
grounds and is provably optimal under certain assump-
tions [8], in contrast to Shor’s where the speedup is only
conjectured. This quadratic speedup is very convenient
theoretically as it does not require any knowledge of the
oracle which encodes the problem into the quantum al-
gorithm. The class of problems for which Grover’s algo-
rithm can be applied include instances of NP-complete
problems which are extremely challenging computation-
ally. Applications where Grover’s algorithm is the main
subroutine range from optimizing functions [9] for e.g.
analyzing high energy physics data [10] to solving vari-
ous graph problems [11] to option pricing [12] to pattern
recognition (finding a string in a text) [13] to various

form of machine learning (including supervised learning
[14], perceptrons [15], active learning agents [15] and re-
inforcement learning [16]). Specific versions have been
implemented on small quantum processors with up to
n ≤ 5 qubits [17–20] but the success probability is still
low for the largest systems.

Grover’s algorithm solves the problem of inverting an
unknown function. Given a function y = f(b) where b
can take N = 2n values, Grover’s algorithm finds the
value b = f−1(y) for a given y in only

√
N calls to the

quantum “oracle” function which implements f(b) while
a naive exhaustive search would require about N calls
to the corresponding classical function. Grover’s theo-
retical speedup is of a peculiar nature: it is an abstract
speedup that considers the oracle as a black box func-
tion and counts the computational cost solely in terms
of the number of calls to the oracle. In any actual im-
plementation, however, the oracle must be realized as a
specific quantum circuit, hence the internal structure of
f(b) must be exposed. In particular the computational
cost of one call to the f(b) oracle may (almost always
will) depend on N in some way.

In this work, we argue that there is no generic theo-
retical speed-up in Grover’s algorithm. To this end, we
construct a quantum inspired Grover algorithm (QiGA)
that solves Grover’s problem on a classical computer. In
contrast to the usual assumptions made to discuss quan-
tum advantage in this context, the input of QiGA is not
the classical oracle f(b) but the quantum oracle, which
is the same quantum circuit that would be given to the
quantum computer. The comparison with a quantum
computer is fairer: both computers are given the same
input. We find that QiGA solves the problem in at most
O(logN) calls and in many cases a single call to the quan-
tum oracle. In other words, if one is capable of simulat-
ing the quantum circuit of the oracle once, then one can
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obtain the same result that would require a quantum
computer to make exponentially many calls to the ora-
cle. Our findings provide a new comparison point for the
discussion of any possible advantage.

In the second half of this work we discuss the implica-
tions of our work for the possibility of a practical quan-
tum advantage using Grover. We argue that if the or-
acle is too hard to simulate classically, so that a quan-
tum computer becomes necessary, then generic, practical
problems arise. We show Grover’s algorithm to be very
sensitive to noise with the success probability decaying
as the exponential of an exponential. Beyond ruling out
near-term implementations for more than a few qubits,
such a rapid accumulation of noise would overwhelm any
known quantum error correction protocol.

This is why we say Grover’s algorithm offers no quan-
tum advantage. By quantum advantage we mean for a
specific problem of a fixed size, that a quantum algo-
rithm running on actual hardware would reach the solu-
tion faster than the best classical strategy. For a given
problem, if the oracle is easy to simulate then a quantum
computer is not needed, while if it is hard to simulate the
quantum implementation will be, as we shall see, beyond
the reach of foreseeable hardware.

This article starts with a summary of the main results
(Section II) for readers mostly interested in the implica-
tions of our work. The rest of the article is split into two
parts. In the first (Sections III and IV), we construct
the quantum inspired algorithm that mimics Grover’s al-
gorithm in a classical computer but takes advantage of
its internal structure to require exponentially fewer calls
to the oracle. We explicitly demonstrate and test this
algorithm using both random and quasi-one-dimensional
instances of NP-complete random boolean satisfiability
problems (3-SAT). In the second part of the article, we
examine the implication of our findings on the possibility
of a quantum speed-up (Sections VI and VII). In par-
ticular, Section VI establishes the lack of resilience of
Grover’s algorithm to noise, an important aspect needed
for the discussion of a possible quantum advantage.

II. SUMMARY OF THE MAIN RESULTS

The logic behind our main claim is summarized in
Fig. 1. The same “oracle” circuit that defines an im-
plementation of GA on a quantum computer is given to
a classical simulator which is limited only by entangle-
ment (a tensor network). If this simulator can calculate
a single oracle circuit with a complexity better than 2n/2,
our QiGA algorithm solves the GA problem parametri-
cally faster than a quantum computer would. Even when
the simulator scales as a less favourable exponential, we
explicitly demonstrate cases where simulating the ora-
cle can be done in just hours on a desktop computer for
n . 40 qubits and likely on a supercomputer for n . 80
qubits. For larger numbers of qubits there must be some
instances of NP-complete problems where simulating the

INPUT: The quantum circuit that implements the oracle f(b)

Is the entanglement 
barrier of one oracle 
smaller than 2n/2 ?

NO

QiGA is parametrically faster than
the quantum computer

QiGA gives the results in hours on a 
desktop

Is the number of 
qubits smaller than 40 ?

Is the number of 
qubits smaller than 80 ?

QiGA gives the results in hours on a 
supercomputer

YES

YES

YES
NO

NO

Running this problem on a quantum computer would take an 
astronomical running time

FIG. 1. Schematic showing the main implications of our
quantum-inspired Grover’s algorithm (QiGA) for the possi-
bility of Grover’s algorithm offering a genuine quantum ad-
vantage.

oracle circuit remains infeasible. Yet for such problems,
GA would require at least 280/2 = 240 ≈ 1012 application
of the oracle circuit on a quantum computer which trans-
lates into an astronomically large time-to-solution even
under favourable hardware assumptions.

At the root of this work is the observation that, in be-
tween the calls to the oracle, the level of entanglement
present in the internal state of a quantum computer run-
ning GA is extremely low. In between each iteration
of GA, the entanglement entropy between any two sub-
groups of qubits is at most log(2). In other words, GA
strongly leverages the ability of quantum mechanics to
create superpositions (quantum parallelism) but it barely
uses the possibility to entangle states.

Before describing our “quantum inspired” GA (where
we use the resources available in a classical computer in
the most efficient way), we start with a “simulation” of
GA (where we only use operations implementable on a
quantum computer). Figure 2 shows the entanglement
entropy of the quantum state during a simulation of
Grover’s algorithm for n = 10 qubits, using the quan-
tum circuit described in Appendix A to implement the
oracle and diffusion steps. As claimed, the entanglement
in between iterations never exceeds log(2), a value which
is reached when the algorithm is halfway done. The en-
tanglement entropy does become higher during the par-
tial application of the oracle and diffusion operator cir-
cuits. The value of this intra-oracle entanglement barrier
is strongly problem dependent and will determine the
performance of the quantum inspired GA.

As we shall see, the low-entanglement states occurring
in GA at integer and half integer iteration number have a
simple classical representation in terms of a rank-2 “ma-
trix product state” [21–23] (MPS) which can easily be
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FIG. 2. Entanglement entropy, in units of log(2), of the quan-
tum state during a simulation of Grover’s algorithm for n = 10
qubits for the optimal number r = 25 of iterations. Substeps
between each complete iteration show the properties of the
state after each layer of the quantum circuits described in Ap-
pendix A which implement the oracle and diffusion operators.
The entropy is dominated by the oracle step for the first half
of the algorithm, then becomes dominated by the diffusion
step for the second half of the algorithm. During the simula-
tion the matrix product state (MPS) rank (not shown) goes
up and down in a sawtooth shape with maxima of χ = 11 dur-
ing an iteration and minima of χ = 2 between each iteration.
The dashed line along the lower envelope is the theoretical
prediction for the entanglement between iterations of the al-
gorithm (the oscillations are a small 1/N effect). The lower
panel shows a zoom of the region in the box in the upper
panel, labeling substeps where the oracle and diffuser circuits
act.

kept on a classical computer at a linear cost in the num-
ber n of qubits just by storing 2n matrices of size 2× 2.
Similarly, the oracle itself is a rank-2 “matrix product
operator” [24, 25] (MPO), another standard object of
tensor network theory.

A second, very important observation of this work is

that being able to compute the action of the oracle circuit
on the initial product state (the post-oracle state) is al-
ways sufficient to complete GA in a single call to the ora-
cle. In fact, it is sufficient to even just compute ∼ log(N)
amplitudes of this state in the |±〉 basis. In this way the
quantum inspired algorithm differs from a mere simula-
tion of GA that would still require an exponentially large
number

√
N = 2n/2 of applications of the oracle circuit.

Hence, the initial problem is mapped onto the follow-
ing question: given a quantum circuit that implements a
given oracle, how can one compute its action on an MPS?
There exist standard techniques for computing the out-
puts of quantum circuits as tensor networks [24, 26–28].
We illustrate them in two cases: in the first we take an
explicit problem (known as 3-SAT) and show that the
explicit knowledge of the oracle’s quantum circuit can be
exploited to enact the oracle efficiently in many cases. In
the second, we consider the generic case of an arbitrary
quantum circuit and show that the full post-oracle state
can be constructed from O(n) amplitudes of this state
using the so-called tensor cross interpolation algorithm.

It remains to discuss the implications of our findings
on the possibility of quantum advantage using GA. On a
theoretical level our quantum inspired GA requires expo-
nentially fewer number of calls to the oracle. In turn, a
classical calculation of the quantum oracle may be expo-
nentially harder than the corresponding task on a quan-
tum computer, depending on the quantum circuit struc-
ture and depth. Hence, which of the two approaches
(classical or quantum) is faster depends on the actual
problem and can not be decided a priori. In particular
oracles whose quantum circuits have small depths (and
therefore more of chance to be eventually implemented
in quantum hardware) can be solved trivially using our
quantum inspired approach.

An interesting corollary of the quantum inspired GA
algorithms relates to classical complexity theory. It is
widely believed that P 6= NP , meaning the so-called
NP-complete problems are exponentially difficult in the
hardest cases. Since NP-complete problems, such as the
random 3-SAT examples we consider below, can be sim-
ulated with GA, it follows that P 6= NP implies that
in at least one instance the entanglement barrier of the
3-SAT oracle must be exponentially high. Otherwise, be-
cause the cost of MPS simulations are determined by the
entanglement, a single call to the oracle could be simu-
lated in polynomial time and hence the full problem as
well, which would imply P = NP . Thus there must be
a direct connection between the complexity of a classi-
cal problem and the entanglement level of the associated
quantum circuit.

On a practical level our quantum inspired GA puts
very stringent conditions on putative quantum hardware
that could be used to implement the GA. In presence
of noise or imperfections, the probability of success of
GA decreases exponentially with the number of applied
gates in the circuit. Since the number of oracle calls,
hence the number of gates, also scales exponentially with
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n in GA, it follows that the overall success rate decays
as an “exponential of an exponential”, i.e. very quickly.
We estimate the associated constraints on the hardware
in terms of qubit number n, noise level, and quantum
computer clock frequency and conclude that none of the
requirements are realistic, even if fault-tolerant quantum
technologies were available.

III. PROBLEM FORMULATION

Grover’s algorithm [5, 6] aims to harness the poten-
tial of quantum parallelism by gradually extracting the
result of a parallel function evaluation through a series
of Grover iterations. For a problem involving classical
states of length N , for which n qubits are needed such
that N = 2n, the number of Grover iterations needed to
extract the result of the problem scales as

√
N , which is

to be compared to worst-case classical strategies such as
guessing solutions at random or performing an exhaus-
tive search which have a cost scaling as N .

A. Notation and Problem Setting

Let b ∈ {0, 1, · · · , N − 1} be an integer whose binary

representation is bn−1 · · · b1b0, that is b =
∑n−1
i=0 bi2

i with
bi ∈ {0, 1}. We denote by |b〉 = |bn−1 · · · b1b0〉 the corre-
sponding n-qubit state in the computational basis.

Let f(b), be a function that takes a bitstring as an
input b and returns

f(b) =

{
1, if b = w

0, if b 6= w
. (1)

Here w is a (unknown) specific bitstring. GA aims to
solve the problem of finding the value of w in as few calls
to the function f as possible. This problem can be viewed
as inverting f , that is, computing w = f−1(1).

GA also assumes one can implement an oracle operator
Uw such that for states |b〉 in the computational basis

Uw|b〉 = (−1)f(b)|b〉. (2)

Since quantum computer can perform classical logic (at
the price of adding ancilla qubits to ensure reversibility),
a classical algorithm that computes f(b) can be turned
into a quantum circuit that implements Eq. (2). The
explicit form of Uw reads,

Uw|b〉 =

{
−|b〉, if b = w

+|b〉, if b 6= w
(3)

therefore Uw is equivalent to the operator

Uw = 1− 2|w〉〈w| . (4)

However, for any real application of practical interest,
one does not know the value of w ahead of time and only

knows how to implement Uw as a quantum circuit based
on the function f .

GA straightforwardly generalizes to the case of multi-
ple solutions {wα}Sα=1 such that f(wα) ≡ 1. One defines
the oracle as

Uw = 1− 2

S∑
α=1

|wα〉〈wα|. (5)

Each solution wα has a binary representation wαn−1 ·
wα2w

α
1w

α
0 . In this article, we focus on the case where

the problem has a fixed number of solutions S (or more
generically where S grows at most polynomially with n).
For problems that have an exponential number of solu-
tions, our algorithm would have to be revisited, but we
conjecture that easy classical solutions exist in that case.
For each qubit, we define the two states |+〉 and |−〉 as,

|±〉 =
|0〉 ± |1〉√

2
(6)

and the equal weight superposition state |s〉 as,

|s〉 = |+ + + · · ·+〉 (7)

=
1√
2n

∑
xn−1···x0∈{0,1}n

|xn−1 · · ·x0〉 . (8)

Last, GA requires a second operator, the diffusion opera-
tor Us that has a structure similar to the oracle but with
respect to the known state |s〉:

Us = 1− 2|s〉〈s| . (9)

B. Definition of the Grover Algorithm

Given an oracle Uw, GA proceeds as follows

1. initiate the qubits in state |000 · · · 0〉

2. apply a Hadamard gate on each qubit to obtain |s〉

3. apply the oracle operator Uw

4. apply the diffusion operator Us

5. repeat steps 3 and 4 each q times

6. measure the qubits in the computational basis and
find |w〉 with a probability very close to one

The optimal number of steps of GA can be estimated
to be about q ≈ r with r ≡ π

4

√
N = π

4 2n/2. In the
case where there are multiple solutions, the measurement
at the end produces one of the wα with uniform proba-
bility. GA has an appealing geometrical interpretation
[29]: Uw and Us are mirror operators with respect to the
hyper-planes perpendicular to w and s. It follows that
the product UsUw is a rotation inside the (|s〉, |w〉) plane
that gradually rotates the state from |s〉 to |w〉.
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C. On the level of entanglement inside Grover’s
algorithm

The type of classical calculation we will consider in-
volves representing the quantum state as a tensor net-
work, specifically a matrix product state (MPS). An MPS
compresses a quantum state by factoring it into a network
of smaller tensors contracted in a one-dimensional chain
like structure. For states having low to moderate entan-
glement, the MPS rank or dimension χ of the “bond”
indices connecting the MPS tensors can be chosen rela-
tively small while representing the state to very high or
even perfect accuracy. Quantum states such as GHZ or
W states are exactly MPS of rank χ = 2 and product
states such as the initial state |s〉 of Grover’s algorithm
are χ = 1 MPS. An important fact we will use below is
that any state which is a sum of P product states can be
explicitly written as an MPS of rank χ = P [24].

In the context of GA, one finds that after any applica-
tion of Uw or Us, the internal state |Ψ〉 of the quantum
computer lies in a superposition of |s〉 and |w〉 [29],

|Ψ〉 = α|s〉+ β|w〉 (10)

with |α|2 + |β|2 = 1, i.e. in the superposition of two
unentangled states (1 + S states in the general case). It
follows that |Ψ〉 can be cast into the form,

|Ψ〉 =
[
α β

] [|w1〉 0

0 |+〉

][
|w2〉 0

0 |+〉

]

...

[
|wn−1〉 0

0 |+〉

][
|wn〉 0

0 |+〉

][
1

1

]
(11)

which is manifestly a rank χ = 2 MPS or χ = 1 + S
in the general case. Such a state is minimally entangled
and can easily be kept inside the memory of a classical
computer at a linear cost in the number of qubits. In
other words, while Grover’s algorithm takes advantage
of quantum parallelism (i.e. superposition), it uses very
little entanglement for most of the algorithm. The only
possible exception is while the oracle circuit has only been
partially applied.

IV. A QUANTUM INSPIRED ALGORITHM
FOR SIMULATING GROVER’S ALGORITHM IN

A SINGLE CALL TO THE ORACLE

We now detail the different steps of our quantum in-
spired Grover’s algorithm (QiGA ). Although we use
MPS and MPO technology for both QiGA and mere sim-
ulations of GA, we emphasize that the goals are very dif-
ferent. In the first, we aim at solving the Grover problem
with as few computations as possible while in the lat-
ter we want to mimic what would happen in a (possibly
noisy) actual quantum computer.

A. A low rank Matrix Product Operator (MPO)
for Grover’s oracle

A crucial observation that makes QiGA possible is that
the oracle Uw can be cast into the form of a rank-2 MPO
(rank 1+S in the case of multiple solutions). The explicit
form of this MPO is

Uw =
[
1 1

]( n∏
i=1

Mi

)[
1

−2

]
(12)

with

Mi =


Ii 0 0 ...

0 |w1
i 〉〈w1

i | 0 ...

0 0 |w2
i 〉〈w2

i | ...

... ... ... ...

... 0 0 |wSi 〉〈wSi |

 (13)

where Ii is the 2×2 identity matrix acting on qubit i and
|wαi 〉〈wαi | the projector on the bitstring i of solution α.
We emphasize that this MPO exists but its construction
is not necessarily easy since, by definition, one does not
have access to the solutions wα. A similar MPO can be
written for the diffusion operator Us with the replace-
ment of Mi by

M ′i =

[
Ii 0

0 |+〉〈+|

]
(14)

in Eq.(12).

B. Solving the problem in a single call to the oracle

Assuming one has access to an explicit form of Uw, such
as the MPO form above, a product of a small number of
MPOs, or an efficiently simulable quantum circuit, one
can construct the MPS state |Ψw〉 = Uw|s〉. Using the
definition of the oracle Eq. (5) and the fact that 〈wα|s〉 =

1√
2n

, we obtain

|Ψw〉 = |s〉 − 2√
2n

S∑
i=1

|wi〉 . (15)

This expression is explicitly the sum of 1 + S product
states, thus the state |Ψw〉 = Uw|s〉 is exactly an MPS of
bond dimension χ = 1 + S.

The form of |Ψw〉 as a sum of product states in Eq. (15)
immediately presents a classical strategy to extract the
solution states {|wi〉} in a single step: one simply sub-
tracts the state |s〉. Subtracting a product state such as
|s〉 from an MPS is a straightforward operation with a
cost scaling as nχ3 ∝ logN . For example, in the case of
n = 100 qubits and χ = 50 the subtraction takes about
0.2 seconds.
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It is important to note that this subtraction opera-
tion has no quantum equivalent. This can be seen easily
with an argument analogous to the no-cloning theorem:
if there existed a unitary matrix that maps |Ψ〉 ⊗ |s〉 to
(|Ψ〉 − |s〉)⊗ |Φ〉 for all |Ψ〉, then this matrix would map
|s〉⊗ |s〉 to the null vector which contradicts the assump-
tion that the matrix is unitary. It follows that our algo-
rithm cannot be used as a “classical preconditioner” for
amplitude amplification [7]. See the associated discussion
in section VII A.

In summary the different steps of QiGA are:

1. Use classical simulation techniques to compute
|Ψw〉 = Uw|s〉 as an MPS of rank χ = 1 + S

2. Compute |W̃ 〉 = |Ψw〉 − |s〉 and normalize it to
obtain |W 〉, an MPS of rank χ = S

3. Sample from |W 〉 to obtain the states |wα〉 with
uniform probability, using the fact that perfect
sampling of MPS can be performed with a cost nχ2

[30, 31]

If S is small enough, the states |wα〉 can also be fully
enumerated.

One can modify the classical approach described above
not only to sample individual solutions wα but even to
count the number of solutions. To do so, one acts with
Uw on the unnormalized state

∑
b |b〉. Then the squared

norm of the resulting state gives the number of solutions.

C. Obtaining the MPS using tensor cross
interpolation

The problem is therefore reduced to the construction
of the explicit MPS form of |Ψw〉 = Uw|s〉 which is known
to have a finite rank χ = 1 + S.

Suppose for a specific bitstring |b〉 one is capable of
classically calculating the amplitude 〈b|Ψw〉. Such a sim-
ulation is known as a closed simulation and is much easier
[32] than a so-called open simulation which provides the
full state |Ψw〉. We will comment in section VII on the
practical limitations to these kind of simulations.

There has been recent progress in algorithms able to
construct a MPS representation of the state |Ψw〉 in
O(χ2n) calls to a routine that calculates 〈b|Ψw〉. Here,
we make use of tensor cross interpolation [33–37] follow-
ing the implementation described in [37]. The advantage
of tensor cross interpolation is that it is agnostic to the
details of the quantum circuit Uw and only requires an
external classical subroutine that computes 〈b|Ψw〉. The
algorithm requests the value of 〈b|Ψw〉 for certain values
of b using an active learning algorithm. It follows that
it is directly compatible with the most advanced meth-
ods that have been developed to calculate amplitudes of
quantum circuits (including those that leverage on the
high level of parallelism available in supercomputers).

Before we can use tensor cross interpolation effectively,
a small adjustment must be performed. A direct calcu-
lation of 〈b|Ψw〉 provides

〈b|Ψw〉 =
1

2n/2

[
1− 2

S∑
α=1

δb,wα

]
. (16)

For a random bitstring b, one has 〈b|Ψw〉 = 1/
√

2n since
it is exponentially unlikely that b matches one of the so-
lutions wα. It follows that the tensor cross interpolation
algorithm would fail to reconstruct the MPS as its explo-
ration of the 〈b|Ψw〉 function would have an exponentially
low probability of finding the relevant part (second half
of the right hand side of Eq.(16)). Another way to see
the same problem is to write 〈b|Ψw〉 in terms of the calls
to the function f(b). It reads

〈b|Ψw〉 =
1

2n/2
(−1)f(b) (17)

i.e. the amplitudes can be calculated in a single call to
f(b). Hence, if |Ψw〉 MPS could be reconstructed from
O(n) = O(logN) calls to 〈b|Ψw〉, it would mean that
the original problem could be solved in O(n) calls to the
function f(b) hence that NP-complete problems could be
solved in polynomial time, an unlikely situation.

To solve this issue, we turn to the |±〉 basis and calcu-
late 〈β|Ψw〉 instead of 〈b|Ψw〉 where |β〉 is a product of
|±〉 states (e.g. |+−+−...−+〉). Denoting the binary
representation of β as β0, β1...βn with βi = 0 for a state
|+〉 and βi = 1 for a state |−〉, we find

〈β|Ψw〉 = δβ,0 −
2

2n

S∑
α=1

(−1)
∑n−1
i=0 βiw

α
i (18)

This form is directly suitable for tensor cross interpo-
lation since information about the solutions wα is now
present for any bitstring β. We emphasize that QiGA
itself knows nothing about the solution wα and only uses
the amplitudes 〈β|Ψw〉. Calculating these amplitudes
〈β|Ψw〉 has the same complexity as calculating 〈b|Ψw〉
since the two quantum circuits only differ by a layer of
Hadamard gates at the end. Similarly, when the MPS is
known in the |β〉 basis, it is simply a matter of applying
local Hadamard gates to get it back in the |b〉 basis. We
have checked in explicit numerical calculations that our
implementation of tensor cross interpolation can recon-
struct the MPS in O(n) calls to the 〈β|Ψw〉 subroutine
up to at least n = 1000.

In terms of call the the function f(b), the amplitudes
〈β|Ψw〉 take the form,

〈β|Ψw〉 =
1

2n

2n−1∑
b=0

(−1)f(b)+
∑n−1
i=0 biβi (19)

which takes O(2n) calls to the classical function, if one
does not take advantage of its quantum circuit form.
Hence we recover the expected O(N) classical scaling
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to solve the search problem if one does not use insights
about the function f . When using the quantum circuit
to compute the oracle amplitudes, the QiGA complex-
ity will depend on the entanglement barrier present in a
single application of the quantum oracle as illustrated in
Fig.2.

We emphasize that the approach outlined above is only
feasible for a closed, classical simulation of the oracle
circuit; it cannot be attempted on a quantum computer.
Indeed, a quantum computer only provides bitstrings β
distributed according to the probability |〈β|Ψw〉|2 but it
does not provide the actual value 〈β|Ψw〉 (nor can one
choose the value of β).

V. ILLUSTRATION WITH AN EXPLICIT
CONSTRUCTION FOR THE 3-SAT PROBLEM

To illustrate our quantum inspired GA with a prac-
tical application, we have implemented a simulation of
the oracle for the 3-SAT boolean satisfiability problem.
3-SAT is an NP-complete problem and finding fast, pos-
sibly heuristic, algorithms for solving it is the subject of
active research, with applications including cryptanalysis
[38, 39], industrial operations research [40], and compu-
tational biology [41].

In a SAT problem, the function f(b) is given by a set of
p clauses that must all be satisfied for b to be a solution.
In 3-SAT, each clause δ is constructed out of 3 variables
biδ , bjδ and bkδ from the binary representation of b. f(b)
takes the form,

f(b) = (b̃i1 ∨ b̃j1 ∨ b̃k1
) ∧ (b̃i2 ∨ b̃j2 ∨ b̃k2

) ∧ . . .
. . . ∧ (b̃ip ∨ b̃jp ∨ b̃kp) (20)

where ∨ means logical “or”, ∧ logical “and”, and b̃a = ba
or b̃a = ¬ba (not ba) depending on the clause.

The problems we consider are defined by choosing the
ratio α = p/n of clauses to variables (or qubits) to be
fixed, usually between 4 < α < 5 since in this range the
number of satisfying solutions S becomes small. Other-
wise the choice of which variables enter into each clause
and whether a variable is negated is made with uni-
form probability. Below we will consider totally random
SAT clauses in section V B then clauses with quasi-one-
dimensional structure in section V C.

A. Tensor Network SAT Approach

To explicitly implement the Grover’s oracle operator
for 3-SAT and construct the post-oracle state |Ψw〉, first
prepare the state of the system to be

|+〉1|+〉2|+〉3 · · · |+〉n|1〉A = |s〉|1〉A (21)

where the extra qubit in the |1〉A state acts as an ancilla
whose role is to record which states of the previous n

qubits either satisfy (|1〉A) or do not satisfy (|0〉A) all of
the SAT clauses applied so far.

Next, each SAT clause C such as C = (b3∨¬b7∨ b8) is
mapped to an operator by noting that there is only one
bitstring which fails to satisfy the clause. In the example
above, this bitstring is 03, 17, 08. Using this bitstring, one
defines an operator

OC = P 0
3 ⊗ P 1

7 ⊗ P 0
8 ⊗ P 0

A + (1− P 0
3 ⊗ P 1

7 ⊗ P 0
8 )⊗ 1A .

(22)

which projects the ancilla qubit into the |0〉A state for any
state containing the unsatisfying bitstring. Otherwise
it leaves the ancilla unchanged. Here P 0

i = |0〉〈0| and
P 1
i = |1〉〈1| are projectors onto the |0〉 or |1〉 states for

qubit i.
In our classical implementation, the operator OC can

be applied in its above form using straightforward tensor
network methods. We used the approach of implement-
ing each OC as an MPO and applying these MPOs to
the quantum state represented as an MPS. As an MPO,
OC has a rank χ = 3, which can be understood from the
fact that when one expands all the terms it is the sum of
three product operators [24].

After applying the OC operators for every SAT clause,
the state of the system becomes

1√
2n

S∑
i=1

|wi〉|1〉A +
1√
2n

2n−S∑
j=1

|w̃j〉|0〉A (23)

where the {wi} are the satisfying bitstrings and the {w̃j}
are the unsatisfying ones. To convert this state to a con-
ventional Grover’s post-oracle state Eq. (15), one can
perform a post-selected, or forced, measurement of the
ancilla qubit to be in the |−〉 = H|1〉 state. (Note that
for a tensor network such a forced measurement always
succeeds on the first try and can be done by just acting
with a single-qubit projection operator.) After dropping
the now unentangled ancilla qubit, the state will take the
form of Eq. (15). If one is only interested in solving the
Grover problem rather than constructing the post-oracle
state, one simply projects the ancilla of Eq.(23) onto the
state |1〉A.

B. Random SAT Experiments

We have tested this classical oracle implementation on
fully random SAT clauses (variables bip chosen by draw-
ing ip randomly from 1, 2, .., n and with each variable
negated with probability 1/2) for up to n = 40 variables
or qubits, using the ITensor software [42, 43] running on
a single workstation with four Xeon 3.6 GHz processors
and 256 Gb of RAM. For all experiments we used a ratio
of clauses to variables of p/n = 4.2. The results shown in
Table I are for various experiments over a range of n and
different random instances for the same n with different
numbers S of satisfying bitstrings. We report both the
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n S χmax time

30 4 467 21 s

32 2 954 1.8 minutes

34 48 1162 3.2 minutes

36 16 1994 8.3 minutes

38 8 5867 1.6 hours

40 0 1402 4.2 minutes

40 28 2926 21 minutes

40 161 5690 1.65 hours

40 174 10374 6.5 hours

TABLE I. Maximum MPS ranks χmax and execution times
to compute the post-oracle state corresponding to random 3-
SAT problem instances involving n variables (n qubits). The
table also shows the number of satisfying assignments or bit-
strings S for each problem instance.

maximum MPS rank χmax, which was the largest rank
encountered during application of the OC operators, and
the total time required to apply all of the operators and
construct the post-oracle state.

After each post-oracle state was prepared, its qual-
ity was checked by projecting (post-selecting) the ancilla
qubit into the state |1〉A then sampling 5000 bitstrings
from the other n qubits to verify that all samples satisfied
the SAT clauses. To count the number S of satisfying bit-
strings (#SAT problem) we applied the MPOs OC to an
unnormalized state with each qubit (except the ancilla)
initialized to (|0〉+ |1〉). Afterward, we projected the an-
cilla into the |1〉A state and computed the norm of the
resulting state which is equal to S. For smaller systems
these counts were verified to be correct by checking with
exact enumeration. The resulting counts S are shown in
the second column of Table I,

These results indicate the post-Grover’s-oracle state
can be prepared classically for typical 3-SAT instances
for at least n = 40 qubits on a single workstation. For
problems of this size, the optimal number of iterations of
Grover’s algorithm would be r = 823, 500 in contrast to
the single application of the oracle used here. The largest
MPS rank encountered across the experiments we per-
formed was χ = 10, 374 which is a small fraction (1%) of
the maximum possible rank 240/2 ≈ 106. The entangle-
ment barrier in the random 3-SAT problem is not only
relatively modest for finite problem sizes, but was typi-
cally observed to be lower for the case of fewer satisfying
solutions S. Hence QiGA appears to perform better on
problems with few solutions.

It is important to note that the approach above can
be straightforwardly parallelized through a “slicing” ap-
proach, similar to other recent high-performance quan-
tum circuit simulations [44–46]. Instead of initializing all
the n input qubits to the |+〉 state, a subset of p of these
qubits can be initialized to either the |0〉 or |1〉 states. By
running 2p separate calculations for each setting of these
computational-basis qubits one can obtain the same final
result by combining the solutions obtained from 2p com-

puters working with no communication overhead. When
trying this in practice, we found that the total computa-
tional effort (sum of running times of each of the parallel
computers) was comparable to the original (serial) run-
ning time, while the maximum time for any one computer
was significantly less than the original time. Because the
oracle acts classically on the computational basis qubits,
the maximum entanglement during the oracle application
is generally much lower for each sliced input so that the
parallel approach results in a faster time to solution.

Note that our implementation of a SAT solver as a
Grover oracle operator is nevertheless far slower than the
most efficient classical SAT solving algorithms, some of
which also happen to use tensor networks [47] and can
solve typical n = 40 instances of 3-SAT in under one
second.

C. Quasi-One-Dimensional SAT Experiments

In this section, we design instances of the 3-SAT prob-
lem where the QiGA approach has provably linear scaling
in the number of qubits n, that is a logarithmic scaling
with problem size log(N). This is in sharp contrast to
the 2n scaling of an unstructured classical problem. The
goal of the construction and associated experiments we
perform below is to illustrate two points. First, it shows
that there are classes of problems for which QiGA is al-
ways exponentially faster than GA. Second, the under-
lying structure that makes the problem easier for QiGA
need not be known a priori: QiGA discovers this struc-
ture and takes advantage of it automatically.

We consider a quasi-1D case that involves grouping
variables into blocks of size B along a 1D path, with the
first block (1, 2, . . . , B), second block (B + 1, . . . , 2B),
etc. The SAT problem is then defined by two sets of
SAT clauses required to be satisfied altogether:

1. Nintra fully random SAT clauses where variables in
each clause only act within each block

2. Linter layers of random SAT clauses where variables
span across two neighboring blocks

The cases we consider will allow Nintra to be any size
while Linter is fixed to a small value such as Linter =
1, 2, 3.

The proof of linear scaling consists of bounding the
cost of applying the constraints of clauses in sets (1) and
(2) above separately. We will use a similar approach as in
Section V A above, with the slight modification that we
will project out any unsatisfying bitstrings for a clause
Cp = (bip ∨ bjp ∨ bkp) by acting with an operator

OCp = (1− P bipip P
bjp
jp

P
bkp
kp

) (24)

that sets the state containing the single bitstring not sat-
isfying Cp to zero. There is no ancilla qubit in this ap-
proach. The process of applying the MPOs OCp is de-
picted in Fig. 3 and explained in detail below.
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Inter:
<latexit sha1_base64="v27o/PbhqtwwBY5hRw8kDkv3mEE="></latexit>{
<latexit sha1_base64="v27o/PbhqtwwBY5hRw8kDkv3mEE="></latexit>{

Qubits:

FIG. 3. Schematic of the process of applying the operators
(MPOs) OCp enforcing the SAT clauses defining the quasi-1D
SAT problem. The qubits are organized into blocks of size B
and a number of random, intra-block SAT clauses are enforced
which act only inside each block. Then a fixed number of
layers of inter-block clauses are enforced which act between
neighboring blocks.

Starting from the product superposition state

|s〉 = |+〉1|+〉2|+〉3 · · · |+〉n (25)

and applying the operators for the set (1) of intra-block
clauses, the cost scales as (Nintra n 23B/2) in the worst
case. To see why, note that the state after applying the
operators will be a product of MPS for each block, and
the maximum bond dimension of an MPS with B sites
is χ = 2B/2.. Algorithms for applying operators to MPS
of this size scale as Bχ3 = B 23B/2. One has to apply
each of the operators OCp and there are Nintra of these.
Finally there are n/B blocks. Multiplying each of these
costs gives the above scaling. Thus the cost of enforcing
the set (1) clauses scales only linearly with number of
qubits n.

Next one enforces the Linter layers inter-block clauses
in set (2). For each layer of such clauses, one can group
the clauses into two sets, one acting across blocks 1 and
2, then 3 and 4, then 5 and 6, etc. and the next set
acting across blocks 2 and 3, 4 and 5, 6 and 7, etc. The
cost of applying the first layer scales at most as n 23B/2

and doubles the bond dimension between blocks in the
worst case, since the bond dimension of the OCp MPOs
is 2. The cost of applying the next layer will then scale
at most as (n 8 23B/2), the extra factor of 8 = 23 coming
from the doubling of bond dimension due to the first
layer. In general the cost of enforcing the (2Linter) layers
of inter-block clauses will be (n 22Linter−1 23B/2).

Therefore the overall cost of enforcing all of the 1D
3-SAT clauses scales as

(n Nintra 23B/2) + (n 22Linter−123B/2) (26)

which is manifestly linear in n, assuming B and Linter

are held constant, and that Nintra depends only on B (is
chosen proportional to B).

In practice, when implementing the above method on
test systems of n = 40 qubits, using a fixed block size of
B = 10, taking Linter = 2 and choosing Nintra = 3.7 ·B,
we find that all the clauses can be enforced in a running
time of under 1 second. The maximum MPS bond di-
mension observed is χ = 22. Systems with n = 60 qubits
are just as easy for the same block size and number of

n S χmax time

40 99 21 0.973s

40 50 22 0.973s

40 108 16 0.989s

40 0 19 0.985s

60 4530 22 2.00s

60 0 19 1.98s

60 17920 19 1.96s

TABLE II. Maximum MPS ranks χmax and execution times
to compute the post-oracle state corresponding to blocked 1D
3-SAT problem instances involving n variables (n qubits). In
all cases the block size was chosen as B = 10 and Nintra = 37
random clauses were applied within each block while Ninter =
2 layers of clauses were applied between neighboring blocks.
The table also shows the number of satisfying assignments or
bitstrings S for each problem instance.

clauses per block, with similar maximum bond dimension
and running times just under 2 seconds. See Table II for
detailed results.

VI. SCALING OF ERRORS IN GROVER’S
ALGORITHM

We now turn to the second part of this work where
we discuss the possibility of quantum advantage for GA.
Before we can do that, we need to study the sensitivity of
GA to the presence of imperfections such as gate errors
or decoherence. There has been some previous literature
on this subject [48]. The advantage of our tensor network
approach is the capability to study relatively large system
from which we can extract the actual scaling of the errors
in GA.

At the end of GA, the quantum computer is supposed
to be in the state |w〉 so that upon measuring the qubits
one finds the solution w almost certainly (up to negligi-
ble exponentially small 1/N corrections). However, due
to imperfection in the gates or environmental coupling
and decoherence the system will be in some other state
instead, described by the density matrix ρ. The proba-
bility to get the correct output w when one performs the
measurement of the qubits is F = 〈w|ρ|w〉. F is known
as the fidelity of the calculation which matches the suc-
cess probability of the algorithm for GA. Generically, the
fidelity decays exponentially with the number of gates
applied in the calculation as well as with any idle time
(decoherence). This exponential behavior has been ob-
served ubiquitously in experiments and was established
on a large scale in the seminal “quantum supremacy”
experiment of Google [49]. Denoting by ε the typical er-
ror per gate and Ng the total number of gates used, we
therefore expect the decay rate to be F ≈ e−εNg with
Ng = r(No + Nd) where No (resp. Nd) is the number
of gates in the quantum circuit of the oracle (resp. dif-
fusion operator). In other words, the success probability
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FIG. 4. (a) Probability of success versus number of iterations
of Grover’s algorithm for n = 30 qubits and different levels
of noise λ. Also shown are theoretical fits to the cases λ =
10−5, 10−4. For n = 30 the theoretically optimal number of
iterations is r = 25, 736. The final success probability reaches
a reasonable value for noise λ < 5 × 10−5, but once the noise
becomes as large as λ = 104, the success probability reaches
a maximum of only 0.04 at the 10,000th iteration then falls
to about 0.006 by the final iteration. (b) Final probability of
success after the optimal number of iterations r as a function
of total noise Λ = λr where λ is the amount of depolarizing
noise per iteration.

of GA is expected to follow a rather unfavorable double
exponential decay with n,

F ≈ exp
[
− πε

4
(
√

2)n (No +Nd)
]
. (27)

To substantiate the scaling of GA with noise and num-
ber of qubits, we have performed classical simulations us-
ing an MPO state representation capable of representing
mixed states. For these simulations we also implement
the oracle and diffusion operators as MPO tensor net-
works as described in Section IV A. As discussed earlier,
without noise the MPS bond dimension χ of the state in
between the oracle and diffusion steps (so at every step
of these simulations) is χ = 2, leading to an MPO-mixed-

state representation of only χ = 4 so that each step can
be performed rather quickly and it is possible to run the
whole algorithm up to about n = 30 qubits in under an
hour. Adding noise to the simulations only modifies the
bond dimension of the state very slightly and observed
bond dimensions always remain less than χ . 10.

To model the effects of noise, we apply a depolarizing
noise channel ∆λ(ρ) = (1−λ)ρ+ λ

2n I in between Grover
iterations, that is once per iteration. By not including
any noise during the application of the oracle or the dif-
fuser our simulations are being very generous in favor
of the success of GA. The noise per iteration λ relates
simply to the noise per gate λ = ε(No +Nd).

The results of our simulations for n = 30 qubits and
various levels of noise λ are shown in Fig. 4(a). As long
as the noise λ . 5× 10−5 the final probability of success
reaches a reasonable value after the optimal number of
iterations, which for n = 30 is r = 25, 736. However,
the probability of success after r iterations falls below
1% once the noise becomes larger than about 10−4. Note
that non-zero noise leads to a maximum in the success
probability at an earlier iteration q∗ < r. We analyze the
height and location of this maximum further below.

Due to the transparent nature of GA and the depo-
larizing noise model, one can actually work out an exact
result for the state after q steps of the algorithm. By a
recursive procedure, one finds:

ρq = (1− λ)q|Ψq〉〈Ψq|+ (1− (1− λ)q)I
1

2n
(28)

where |Ψq〉 is the ideal pure state after q noiseless Grover
iterations. Using a well-known result for the probability
of success of the noiseless GA after q iterations [50]

|〈w|Ψq〉|2 = sin2((2q + 1)θ) (29)

θ = arcsin
( 1√

2n

)
(30)

it follows that the probability of success after iteration q
is given by

pq = 〈w|ρq|w〉 = (1− λ)q sin2((2q + 1)θ) . (31)

Since q � 1, ignoring exponentially small corrections, we
have:

pq = e−λq sin2(2qθ) . (32)

We show in Fig. 4 that this fit works well, though there
is a slight disagreement which we attribute not to the fit,
but to a loss of precision in the early iterations of the
numerical simulations due to the use of double-precision
floating point numbers and the very small signal of GA
through the early iterations [51].

Interestingly, the form of pq Eq. (32) means that if one
defines the noise level in terms of a parameter Λ such
that λ = Λ/r then the final success probability is

pr = e−Λ (33)



11

regardless of the number of qubits, using the fact that
sin2(2rθ) ≈ 1 up to exponentially small corrections. One
can interpret Λ = λ · r as the total accumulated noise
throughout a complete run of GA. In Fig. 4 we show
how the final success probability pr observed in noisy
simulations fits very well to e−Λ.

In the presence of large noise, due to a maximum that
develops in the fidelity curve, it is advantageous for GA to
stop the iteration at a certain smaller value of q = q∗. An
explicit calculation of the optimum of Eq.(32) provides

tan[2(r − q∗)θ] =
Λ

π
(34)

from which we arrive at the optimum success probability,

psuccess =
e

2Λ
π arctan( Λ

π )

1 + (Λ/π)2
e−Λ. (35)

This formula behaves as psuccess ≈ e−Λ for small Λ (ap-
proaching 1.0 as Λ → 0) and behaves as psuccess ≈
e−2 · (π/Λ)2 for large Λ.

Because psuccess depends only on Λ, an important con-
clusion is that for the GA success probability to scale
successfully to large values of n, the total noise Λ must
be held independent of n. The noise per iteration λ must
therefore scale as

λ =
Λ

r
∝ Λ

(
√

2)n
(36)

showing the noise per iteration must be reduced expo-
nentially with n.

VII. ON THE POSSIBILITY OF QUANTUM
ADVANTAGE IN GROVER’S ALGORITHM

There are two kinds of quantum advantages. The theo-
retical one, i.e. the possibility that in an idealized world a
perfect quantum computer could perform parametrically
better than a classical one for a given task. And the prac-
tical one, i.e. the possibillty that an actual device does
something useful faster than a classical machine.

With respect to the first question our QiGA merely
reverses the charge of the proof: we show that there is no
theoretical quantum advantage unless proven otherwise
and quantum advantage has to be decided in a case-by-
case manner.

With respect to the second kind of quantum advantage
involving an actual machine, the existence of QiGA and
the demands for implementing GA place drastic bounds
on the hardware needed which we will argue are sim-
ply out of reach. When discussing hardware, there is
long list of specifications that we could consider includ-
ing heat management, control electronics, classical data
bandwidth for e.g. syndrom analysis, device variabil-
ity, power consumption...Here we limit ourselves to dis-
cussing three aspects: the total qubit count, the error
budget per gate and the time to solution.

A. Absence of generic theoretical quantum
advantage

QiGA implies that if the quantum circuit for the oracle
can be simulated classically, then O(n) such calculations
are sufficient to solve the problem while a quantum com-
puter needs O(2n/2) calls to the oracle. An immediate
consequence is that no theoretical quantum advantage
can be claimed generically, i.e. irrespectively of the na-
ture of the underlying quantum circuit for the oracle.
This is an important point to make with respect to the
large literature which assumes, implicitly or explicitly,
the existence of a quantum speed-up every time a GA
replaces its classical counterpart [52].

If the complexity for calculating one amplitude of the
oracle is smaller than (

√
2)n, then QiGA is parametri-

cally faster than its quantum counterpart. Constructing
an oracle whose classical simulation is provably harder
than (

√
2)n can most likely be done. Indeed, in the large

depth limit classical simulations of quantum circuits have
a generic complexity of 2n. Yet, we are not aware of such
a construction for an actual oracle (i.e. a circuit whose
output amplitudes are only ±1). Conversely, there are
clear cases where classical algorithms win. For instance,
if the oracle can be simulated with a fixed depth, then
the problem can be solved in linear time using MPS tech-
nology while GA would require an exponential time. The
Quasi-1D SAT is another example.

We emphasize that our work does not contradict previ-
ous work that formally proves that the quantum speed-up
of GA is optimal [8]. While the proof is certainly valid
technically, its usefulness for a given problem requires the
best known classical strategy to scale as 2n (i.e. worst-
case classical scaling) for that problem. But for any spe-
cific problem, if Grover’s can be applied there must exist
an explicit circuit for the oracle. So there is always at
least some structure to the problem: the structure of the
oracle circuit. One can always try to simulate this oracle
circuit by applying it to a tensor network. Until such a
“simulability check” has been done, the applicability of
the proof remains in doubt because the problem might
not satisfy the proof’s assumptions. In other words, one
must be very careful with using the concept of an “or-
acle” which, however appealing theoretically, might not
be relevant to practical applications.

A corollary of the existence of QiGA is that the quan-
tum circuit associated to the oracle of an NP complete
problem must be exponentially difficult to simulate in the
general case, i.e. presents an exponentially high entan-
glement barrier. Indeed, otherwise, one could simulate it
in polynomial time which would prove P = NP a state-
ment widely believed to be untrue. Hence QiGA provides
a direct connection between classical complexity theory
and the entanglement level of a quantum circuit.

Lastly, we would like to discuss the relation of this work
to amplitude amplification [7], a direct generalisation of
GA. In some cases, there exist fast classical heuristic algo-
rithms that can solve NP-hard problems faster than GA,
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though still scaling exponentially. For instance, there
exist very fast classical algorithms for the 3-SAT prob-
lem which we considered earlier in our QiGA demonstra-
tions (incidentally, among the best are tensor network
approaches [47]). Amplitude amplification is claimed to
recover the quadratic Grover speedup over such fast clas-
sical algorithms by combining these algorithms with a
slight modification of GA. Below, we show that QiGA
applies in this context as well. We again argue that the
question of whether the oracle can be simulated classi-
cally is a crucial one.

A classical heuristic algorithm takes the form of a func-
tion b = G(r) that proposes a bitstring b as a possible so-
lution. Here the variable r captures the probabilistic na-
ture of the heuristic, e.g. it can be the seed of the pseudo
random number generator used in the heuristic. In a
good heuristic, r need to span a much smaller number of
values than b. For instance, in the context of 3-SAT, the
Schoning algorithm [53] solves 3-SAT (with a complexity
(4/3)n) by an iterative process over bitstrings where at
each stage an unsatisfied clause is chosen randomly and
then a bit of the clause is flipped in order for the clause to
become satisfied. To transform this heuristic into a quan-
tum algorithm, amplitude amplification does not search
for the bitstring b that satisfies f(b) = 1 but instead uses
GA to search for the value of r that satisfies f(G(r)) = 1
(see the discussion around Theorem 6 of [7]), i.e. one
needs to use GA with the oracle Uw|r〉 = (−1)f(G(r))|r〉.
It follows that our QiGA approach applies directly to
the amplitude amplification of these heuristics: one only
needs to modify the oracle in the same way it would be
modified for the quantum computer. Hence, the ques-
tion of the existence of a theoretical quantum advantage
translates again into the one of an entanglement barrier,
here of the new oracle f(G(r)). Anticipating on the dis-
cussion of the next section, these heuristics make classical
problems computable up to very large values of n. For
instance for 3-SAT, problems with n ∼ 10, 000 are well
within range. It follows that the entrance level for GA
for these problems would be much higher than for the
problems for which no heuristic is available. As we shall
see in the estimates below, this would translate into in-
accessible number of required qubits and astronomically
large times to solution.

B. Absence of practical quantum advantage on a
noisy quantum computer

We now turn to the question of a practical advantage
and provide some estimates about the specifications a
quantum hardware must fullfill to solve a task better than
what one can do classically. We start by estimating the
total gate count Ng. The diffusion operator typically re-
quires 2n Toffoli gates and the oracle at least the same (a
simpler oracle would likely be rather easy to solve clas-
sically). Each Toffoli gate must be decomposed into 15
gates (including 6 Control-NOT and 7 T gates). We ar-

rive at a total gate count for GA of Ng ≥ 60n 2n/2 as-
suming perfect connectivity (i.e. that the two-qubit gates
can be applied between any pairs of qubits). In order for
the final success probability to be of order unity (here we
choose psuccess = 1/2) we need Λ ≈ 0.8 which translates
into ε ≤ 1/(60n 2n/2).

It follows that in order to apply GA on just 5 qubits,
one needs ε ≤ 5.10−4 which is much better than any ex-
isting hardware. Indeed, the experimental value of the
error per gate ε has been mostly stable in the last ten
years, typically around ε ≈ 0.01 for the state of the art
[49] and slightly better for some systems with few (< 10)
qubits. Previous applications of GA for a few qubits
used a much smaller gate count in order to retain a large
enough fidelity. This is possible for contrived examples
where one uses Eq. (3) instead of Eq. (2) i.e. one ex-
plicitly uses information about the solution w instead of
performing the classical logic of computing f(b). While
this is perfectly acceptable for proof of principle exper-
iments, this does not correspond to the full application
of GA to actually solve a problem. Going to n = 40
which we can easily solve on a desktop computer using
QiGA leads to ε ≤ 4.10−10. Manipulating tens of qubits
with precisions better than one part in a billion for a
total of billions of gates is in our view completely unre-
alistic. Using the best available algorithms available on
supercomputers (see [32] for a recent review) to perform
QiGA we estimate that n = 80 problems are accessible
on supercomputers (most probably n ≥ 100). Solving
such a problem would require ε ≤ 2.10−16 as well as a
time to solution (assuming very fast 10 ns gates) of more
than one year of uninterrupted running time.

C. Absence of practical quantum advantage on a
fault tolerant quantum computer

The problem of limited qubit fidelity can in principle
be solved by quantum error correction which should allow
to lower the effective error level per gate εL by construct-
ing robust logical qubits out of several physical qubits.
However, quantum error correction trades a better effec-
tive εL with a much higher qubit count nL as well as a
much higher time to solution since logical qubits require
many physical qubit operations in order to make a single
logical one. Hence, we can already anticipate that quan-
tum error correction is unlikely to help given the above
already high estimate of the time to solution.

To make quantitative estimates, we focus on the ex-
ample of the surface code, one of the most robust QEC
code with a clear path to implementation [54]. We ignore
non-correctable errors [55] for simplicity. We also ignore
the so-called syndrome analysis although this would be
quite problematic in practice. In the surface code, the
error εL per logical gate on a logical qubit scales as

εL ∝ εph

(
εph

εth

)√Nc/2
(37)
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where Nc is the number of physical qubit per logical
qubit, εph is the error per gate on the physical qubits
and εth is the threshold of the code, around εth ≈ 0.01 for
the surface code [54]. Ignoring logarithmic corrections,
we immediately observe that the exponentially large run-
ning time which implies that one must have εL(

√
2)n ≤ 1

translates into

Nc ∝ n2. (38)

i.e. the number of physical qubits per logical one in-
creases quadratically with n in sharp contrast to e.g.
Shor’s algorithm where Nc ∝ (log n)2 has a weak log-
arithmic increase. We can already surmise that, since
the estimates for algorithms with exponential speed-up
already involve millions, or more realistically billions, of
very high quality physical qubits to address n = 100, the
added complexity in Grover would move these estimates
far beyond anything reasonable [56].

To continue, we need to modify our gate count es-
timate and consider separately the Control-NOT gates
and the T gates. In the surface code, Control-NOT are
performed through “braiding”, a process that requires
making a loop of one qubit around the other which costs
an extra

√
n
√
Nc factor. Also, the time scale is no longer

limited by the time it takes to execute one gate but by the
time to make a projective measurement of the so-called
stabilizers. For instance in superconducting transmon
qubit, the former can be as low as 10 ns while the later
takes around 1µs. Systems based on atomic physics such
as cold ions are typically much slower. Also, the error per
gate ε is likely to be limited by the measurement errors
that are typically much worst than the error per gate.
Considering only Control-NOT operations we arrive at
a time to solution of 105 years for n = 80. Applying T
gates on a surface code requires the availability of special
states that can be obtained through “magic state distilla-
tion”, a lengthy process that involve several logical qubits
for each T gate that one wants to apply. In order for the
already rather large time to solution not to be slowed
down by the T gates, one would need to incorporate a
large number of “T gate factories” on the quantum chip
thereby raising the total qubit count dramatically. We
need not to elaborate further, it should be clear at this
stage that the fate of quantum error correction for the
implementation of GA is extremely doubtful.

VIII. CONCLUSION

Grover’s algorithm is an elegant intellectual construc-
tion. Unfortunately our analysis indicates that it will
remain so for the foreseeable future.

We have constructed a quantum inspired version of
Grover’s algorithm that can solve quantum problem in
a single call to the oracle, requiring exponentially fewer
steps than Grover’s algorithm, provided one is able to
compute individual amplitudes of the oracle. We have

also provided specific cases where this “classical advan-
tage” can be realized.

Since our classical algorithm is fully general, it provides
a clear benchmark against which one can evaluate the po-
tential speed-up of Grover algorithm both theoretically
and practically. While we cannot exclude a theoretical
quantum scaling advantage for every problem, assum-
ing an idealized quantum implementation, we estimate
that practical quantum implementations will be associ-
ated with astronomically large computing times. On the
other hand, problems for which a quantum implemen-
tation may seem necessary could have hidden structure
revealed by our classical algorithm in the form of low en-
tanglement barriers on the way to a solution. And even
if the entanglement barrier does grow with problem size
and produces an exponential scaling, it remains possible
this scaling could be better than 2n/2 for specific classes
of problems.

A work which has some overlap with ours is the pro-
posal of Chamon and Mucciolo [57] to use MPS tensor
networks as a classical computing platform for solving
Grover’s algorithm problems. An important technical
difference, however, is that their algorithm depends on
computing and comparing exponentially small numbers,
which could become challenging when working with fixed
precision floating-point. Also, while their work discusses
the growth of entanglement in Grover oracles, only worst-
case bounds are stated.

A separate line of work based on the problem size
needed for a quantum/classical scaling crossover has also
cast doubt on the usefulness of Grover’s algorithm since
it only offers at best a quadratic speedup, while the esti-
mated speeds of error-corrected quantum operations are
expected to remain much slower than classical operations
[58, 59]. This is an entirely distinct argument from ours
which further casts doubt on the usefulness of Grover’s
algorithm as a practical tool.

Beyond the above rather negative results, our quan-
tum inspired algorithm may also lead to more positive
results. For instance, while we have focused on exact
calculations of the the quantum circuit amplitudes, an in-
teresting possibility would be to construct the MPS from
approximate calculations of the amplitudes 〈β|Ψw〉 using
standard MPS compression techniques. It is unclear if
the resulting MPS would provide an efficient heuristic
for solving the Grover problem.
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[21] S. Östlund and S. Rommer, Thermodynamic limit of den-
sity matrix renormalization, Phys. Rev. Lett. 75, 3537
(1995).

[22] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Phys. Rev. Lett. 91, 147902
(2003).

[23] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I.
Cirac, Matrix product state representations, Quantum
Info. Comput. 7, 401–430 (2007).

[24] I. P. McCulloch, From density-matrix renormalization
group to matrix product states, Journal of Statistical Me-
chanics: Theory and Experiment 2007, P10014 (2007).
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Appendix A: Quantum Circuits for Oracle and
Diffusion Operators

We discuss here some details of the quantum circuit
used in the simulations of GA, not to be confused with
the QiGA calculations.

For obtaining the entanglement entropy plot Fig. 2,
which shows the entanglement not only between Grover
iterations but also inside of the substeps of the oracle
and diffusion circuits, we used the circuits shown in the
figure below. These circuits are for the case where the
target bitstring w is known. (The target for the diffusion
operator is always known, since it can be implemented as
the oracle which targets |000...0〉 pre- and post-processed
by a Hadamard gate on each qubit.) The circuit pattern
below uses at most three-qubit gates. This is in contrast
to the implementation sometimes seen where the oracle
is implemented by a “multi-controlled” gate, which is
equivalent to our observation in the main text that the
oracle can always in principle be implemented by a rank
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w).
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string w = 1011, the oracle circuit pattern used for the
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=
For Grover’s algorithm on n qubits, the operator above

is initialized by preparing n+ 1 additional ancilla qubits,
n in the |0〉 state and the n+ 1 qubit in the |−〉 = H|1〉
state. By using Toffoli gates acting on the upper and
lower registers, the ancillas are flipped to indicate that
each qubit of the target bitstring has been found (upper
control) and that all previous bits have been found (lower
control). If so, the next ancilla qubit is flipped to 1.

The notation of the white circle for the upper control
of the second Toffoli gate stands for an “anti-control”
meaning the gate acts only if that qubit is |0〉. This kind
of control can be viewed as shorthand for:
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=

that is, NOT gates on either side of a regular control.
At the center of the circuit, if the nth ancilla qubit is

1, then the n+1 ancilla is acted on by a NOT gate which
results in a minus sign (“phase kickback mechanism”) for
the amplitude of the state with the target bitstring in the
upper register. Lastly, the Toffoli gates are acted in re-
verse order to “uncompute” the ancilla register, restoring
all of the ancillas to their initial product state. It is easy
to check by inspection that applying the above circuit to
|b〉|0000−〉A leads to ±|b〉|0000−〉A depending on wither
b = w or not.
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