Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

First-order quantum breakdown of superconductivity in an amorphous superconductor

Abstract

Continuous quantum phase transitions are widely assumed and frequently observed in various systems of quantum particles or spins. Their characteristic trait is a second-order, gradual suppression of the order parameter as the quantum critical point is approached. The localization of Cooper pairs in disordered superconductors and the resulting breakdown of superconductivity have long stood as a prototypical example. Here we show a departure from this paradigm, in which a discontinuous first-order quantum phase transition is tuned by disorder. We measure the plasmon spectrum in superconducting microwave resonators on amorphous superconducting films of indium oxide to provide evidence for a marked jump in both the zero-temperature superfluid stiffness and the transition temperature at the critical disorder. This discontinuous transition sheds light on the role of repulsive interactions between Cooper pairs and the subsequent competition between superconductivity and insulating Cooper-pair glass. Furthermore, we show that the critical temperature of the films no longer relates to the pairing amplitude but aligns with the superfluid stiffness, consistent with the pseudogap regime of preformed Cooper pairs. Our findings raise fundamental new questions about the role of disorder in quantum phase transitions and carry implications for superinductances in quantum circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resistivity and microwave spectroscopy of indium oxide striplines.
Fig. 2: Phase-driven superconducting transition.
Fig. 3: First-order quantum breakdown of superconductivity.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sacépé, B., Feigel’man, M. & Klapwijk, T. M. Quantum breakdown of superconductivity in low-dimensional materials. Nat. Phys. 16, 734–746 (2020).

    MATH  Google Scholar 

  2. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    ADS  MATH  Google Scholar 

  3. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

  4. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998).

    MATH  Google Scholar 

  5. Gantmakher, V. F. & Dolgopolov, V. T. Superconductor–insulator quantum phase transition. Phys.-Uspekhi 53, 1–49 (2010).

    ADS  Google Scholar 

  6. Lin, Y.-H., Nelson, J. & Goldman, A. Superconductivity of very thin films: the superconductor–insulator transition. Phys. C 514, 130–141 (2015).

    ADS  MATH  Google Scholar 

  7. Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    ADS  MATH  Google Scholar 

  8. Finkel’stein, A. Suppression of superconductivity in homogeneously disordered systems. Phys. B 197, 636–648 (1994).

    ADS  MATH  Google Scholar 

  9. Sacépé, B. et al. Disorder-induced inhomogeneities of the superconducting state close to the superconductor–insulator transition. Phys. Rev. Lett. 101, 157006 (2008).

    ADS  Google Scholar 

  10. Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).

    MATH  Google Scholar 

  11. Chand, M. et al. Phase diagram of the strongly disordered s-wave superconductor NbN close to the metal-insulator transition. Phys. Rev. B 85, 014508 (2012).

    ADS  MATH  Google Scholar 

  12. Sherman, D. et al. Effect of Coulomb interactions on the disorder-driven superconductor-insulator transition. Phys. Rev. B 89, 035149 (2014).

    ADS  MATH  Google Scholar 

  13. Kamlapure, A. et al. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor. Sci. Rep. 3, 2979 (2013).

    MATH  Google Scholar 

  14. Carbillet, C. et al. Spectroscopic evidence for strong correlations between local superconducting gap and local Altshuler-Aronov density of states suppression in ultrathin NbN films. Phys. Rev. B 102, 024504 (2020).

    ADS  Google Scholar 

  15. Mandal, S. et al. Destruction of superconductivity through phase fluctuations in ultrathin a-MoGe films. Phys. Rev. B 102, 060501 (2020).

    ADS  MATH  Google Scholar 

  16. Sacépé, B. et al. Pseudogap in a thin film of a conventional superconductor. Nat. Commun. 1, 140 (2010).

    Google Scholar 

  17. Mondal, M. et al. Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition. Phys. Rev. Lett. 106, 047001 (2011).

    ADS  MATH  Google Scholar 

  18. Mondal, M. et al. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films. Sci. Rep. 3, 1357 (2013).

    MATH  Google Scholar 

  19. Dubouchet, T. et al. Collective energy gap of preformed Cooper pairs in disordered superconductors. Nat. Phys. 15, 233–236 (2018).

    Google Scholar 

  20. Pracht, U. S. et al. Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins. Phys. Rev. B 93, 100503 (2016).

    ADS  MATH  Google Scholar 

  21. Singh, G. et al. Competition between electron pairing and phase coherence in superconducting interfaces. Nat. Commun. 9, 407 (2018).

    ADS  MATH  Google Scholar 

  22. Raychaudhuri, P. & Dutta, S. Phase fluctuations in conventional superconductors. J. Phys. Condens. Matter 34, 083001 (2021).

    ADS  MATH  Google Scholar 

  23. Ghosal, A., Randeria, M. & Trivedi, N. Role of spatial amplitude fluctuations in highly disordered s-wave superconductors. Phys. Rev. Lett. 81, 3940–3943 (1998).

    ADS  MATH  Google Scholar 

  24. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS  MATH  Google Scholar 

  25. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    ADS  MATH  Google Scholar 

  26. Mooij, J. E. & Schön, G. Propagating plasma mode in thin superconducting filaments. Phys. Rev. Lett. 55, 114–117 (1985).

    ADS  MATH  Google Scholar 

  27. Camarota, B., Parage, F., Balestro, F., Delsing, P. & Buisson, O. Experimental evidence of one-dimensional plasma modes in superconducting thin wires. Phys. Rev. Lett. 86, 480–483 (2001).

    ADS  Google Scholar 

  28. Sacépé, B. et al. High-field termination of a Cooper-pair insulator. Phys. Rev. B 91, 220508 (2015).

    ADS  Google Scholar 

  29. Ma, M. & Lee, P. A. Localized superconductors. Phys. Rev. B 32, 5658–5667 (1985).

    ADS  Google Scholar 

  30. Ghosal, A., Randeria, M. & Trivedi, N. Inhomogeneous pairing in highly disordered s-wave superconductors. Phys. Rev. B 65, 014501 (2001).

    ADS  MATH  Google Scholar 

  31. Feigel’man, M., Ioffe, L., Kravtsov, V. & Cuevas, E. Fractal superconductivity near localization threshold. Ann. Phys. 325, 1390–1478 (2010).

    ADS  MATH  Google Scholar 

  32. Bouadim, K., Loh, Y. L., Randeria, M. & Trivedi, N. Single and two-particle energy gaps across the disorder-driven superconductor–insulator transition. Nat. Phys. 7, 884–889 (2011).

    Google Scholar 

  33. Eagles, D. M. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969).

    ADS  MATH  Google Scholar 

  34. Uemura, Y. J. et al. Universal correlations between Tc and \(\frac{{n}_{\rm{s}}}{{m}^{* }}\) (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    ADS  MATH  Google Scholar 

  35. Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610 (1972).

    ADS  MATH  Google Scholar 

  36. Kosterlitz, J. & Thouless, D. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

    ADS  MATH  Google Scholar 

  37. Lemberger, T. R., Hetel, I., Tsukada, A., Naito, M. & Randeria, M. Superconductor-to-metal quantum phase transition in overdoped La2−xSrxCuO4. Phys. Rev. B 83, 140507 (2011).

    ADS  Google Scholar 

  38. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. Nat. Phys. 3, 700–702 (2007).

    Google Scholar 

  39. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    ADS  Google Scholar 

  40. Müller, M. & Ioffe, L. B. Glass transition and the Coulomb gap in electron glasses. Phys. Rev. Lett. 93, 256403 (2004).

    ADS  MATH  Google Scholar 

  41. Müller, M. & Pankov, S. Mean-field theory for the three-dimensional Coulomb glass. Phys. Rev. B 75, 144201 (2007).

    ADS  MATH  Google Scholar 

  42. Efros, A. L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49 (1975).

    ADS  MATH  Google Scholar 

  43. Poboiko, I. & Feigel’man, M. Mean-field theory of first-order quantum superconductor-insulator transition. SciPost Phys. 17, 066 (2024).

    MathSciNet  MATH  Google Scholar 

  44. Mattis, D. C. & Bardeen, J. Theory of the anomalous skin effect in normal and superconducting metals. Phys. Rev. 111, 412–417 (1958).

    ADS  MATH  Google Scholar 

  45. Feigel’man, M. V., Ivanov, D. A. & Cuevas, E. Dielectric response of Anderson and pseudogapped insulators. New J. Phys. 20, 053045 (2018).

    ADS  MathSciNet  Google Scholar 

  46. Ivanov, D. A. & Feigel’man, M. V. Low-energy dynamical response of an Anderson insulator with local attraction. Phys. Rev. B 95, 045147 (2017).

    ADS  MATH  Google Scholar 

  47. Ebensperger, N. G. Dielectric Properties on the Insulating Side of the Superconductor-Insulator Transition. PhD thesis, Univ. Stuttgart (2021).

  48. Larkin, A. & Varlamov, A. Theory of Fluctuations in Superconductors (Oxford Univ. Press, 2005).

  49. Poboiko, I. & Feigel’man, M. Paraconductivity of pseudogapped superconductors. Phys. Rev. B 97, 014506 (2018).

    ADS  MATH  Google Scholar 

  50. Kristen, M. et al. Giant two-level systems in a granular superconductor. Phys. Rev. Lett. 132, 217002 (2024).

    ADS  MATH  Google Scholar 

  51. Levy-Bertrand, F. et al. Electrodynamics of granular aluminum from superconductor to insulator: observation of collective superconducting modes. Phys. Rev. B 99, 094506 (2019).

    ADS  Google Scholar 

  52. Imry, Y. & Wortis, M. Influence of quenched impurities on first-order phase transitions. Phys. Rev. B 19, 3580–3585 (1979).

    ADS  MATH  Google Scholar 

  53. Imry, Y. & Ma, S.-k Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975).

    ADS  MATH  Google Scholar 

  54. Vojta, T. Phases and phase transitions in disordered quantum systems. AIP Conf. Proc. 1550, 188–247 (2013).

    ADS  MATH  Google Scholar 

  55. Crane, R. et al. Survival of superconducting correlations across the two-dimensional superconductor-insulator transition: a finite-frequency study. Phys. Rev. B 75, 184530 (2007).

    ADS  MATH  Google Scholar 

  56. Grünhaupt, L. et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nat. Mater. 18, 816–819 (2019).

    ADS  MATH  Google Scholar 

  57. Hazard, T. M. et al. Nanowire superinductance fluxonium qubit. Phys. Rev. Lett. 122, 010504 (2019).

    ADS  Google Scholar 

  58. Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).

    ADS  MATH  Google Scholar 

  59. Grünhaupt, L. et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum. Phys. Rev. Lett. 121, 117001 (2018).

    ADS  MATH  Google Scholar 

  60. Khvalyuk, A. V., Charpentier, T., Roch, N., Sacépé, B. & Feigel’man, M. V. Near power-law temperature dependence of the superfluid stiffness in strongly disordered superconductors. Phys. Rev. B 109, 144501 (2024).

    ADS  Google Scholar 

  61. Weitzel, A. et al. Sharpness of the Berezinskii-Kosterlitz-Thouless transition in disordered NbN films. Phys. Rev. Lett. 131, 186002 (2023).

    ADS  MATH  Google Scholar 

  62. Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325–340 (1988).

    ADS  MATH  Google Scholar 

  63. Kuzmin, R. et al. Quantum electrodynamics of a superconductor–insulator phase transition. Nat. Phys. 15, 930–934 (2019).

    MATH  Google Scholar 

  64. Arutyunov, K., Golubev, D. & Zaikin, A. Superconductivity in one dimension. Phys. Rep. 464, 1–70 (2008).

    ADS  MATH  Google Scholar 

  65. Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019).

    ADS  MATH  Google Scholar 

  66. Amin, K. R. et al. Loss mechanisms in TiN high impedance superconducting microwave circuits. Appl. Phys. Lett. 120, 164001 (2022).

    ADS  MATH  Google Scholar 

  67. Yong, J., Lemberger, T. R., Benfatto, L., Ilin, K. & Siegel, M. Robustness of the Berezinskii-Kosterlitz-Thouless transition in ultrathin NbN films near the superconductor-insulator transition. Phys. Rev. B 87, 184505 (2013).

    ADS  MATH  Google Scholar 

  68. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012).

    ADS  MATH  Google Scholar 

  69. Mallik, S. et al. Superfluid stiffness of a KTaO3-based two-dimensional electron gas. Nat. Commun. 13, 4625 (2022).

    ADS  MATH  Google Scholar 

  70. Misra, S., Urban, L., Kim, M., Sambandamurthy, G. & Yazdani, A. Measurements of the magnetic-field-tuned conductivity of disordered two-dimensional Mo43Ge57 and InOx superconducting films: evidence for a universal minimum superfluid response. Phys. Rev. Lett. 110, 037002 (2013).

    ADS  Google Scholar 

  71. Turneaure, S. J., Lemberger, T. R. & Graybeal, J. M. Dynamic impedance of two-dimensional superconducting films near the superconducting transition. Phys. Rev. B 63, 174505 (2001).

    ADS  Google Scholar 

  72. Basov, D. N. et al. In-plane anisotropy of the penetration depth in YBa2Cu3O7−x and YBa2Cu4O8 superconductors. Phys. Rev. Lett. 74, 598–601 (1995).

    ADS  MATH  Google Scholar 

  73. Dupré, O. et al. Tunable sub-gap radiation detection with superconducting resonators. Supercond. Sci. Technol. 30, 045007 (2017).

    ADS  MATH  Google Scholar 

  74. Fiory, A. T., Hebard, A. F. & Glaberson, W. I. Superconducting phase transitions in indium/indium-oxide thin-film composites. Phys. Rev. B 28, 5075–5087 (1983).

    ADS  Google Scholar 

  75. Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).

    MATH  Google Scholar 

  76. Wang, C. et al. Surface participation and dielectric loss in superconducting qubits. Appl. Phys. Lett. 107, 162601 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Basko, L. Benfatto, J. Delahaye, T. Grenet, V. Kravtsov, M. Müller, M. Scheffler and C. Strunk for valuable discussions. We thank É. Eyraud for assistance with the cryogenics and J. P. Martinez for the preliminary measurements. T.C. and B.S. acknowledge funding from the ANR Project No. ANR-19-CE30-0014-CP-Insulators. A.K. is grateful for support from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). B.S. has received funding from the European Union’s Horizon 2020 research and innovation programme under the ERC grant SUPERGRAPH no. 866365. N.R. has received funding from the European Union’s Horizon 2020 research and innovation programme under the ERC grant SuperProtected no. 101001310. N.R., B.S. and D.P. acknowledge funding from the ANR agency under the ‘France 2030’ plan, with reference no. ANR-22-PETQ-0003. I.P. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) via grant no. MI 658/14-1.

Author information

Authors and Affiliations

Authors

Contributions

T.C. designed the samples. T.C., D.P. and S.L. fabricated the samples. T.C., S.L., K.R.A., F.B. and F.G. worked on the measurement setup. T.C. and D.P. performed the measurements with initial help from S.L. T.C., B.S. and N.R. analysed the data. M.F., I.P., L.I. and A.K. developed the theory and contributed to the data analysis. B.S. and N.R. conceived the project and supervised it with O.B. B.S., T.C. and A.K. wrote the paper with inputs from all co-authors.

Corresponding author

Correspondence to Benjamin Sacépé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evolution of superfluid stiffness with critical temperature for various superconductors.

Upon variation of disorder, carrier density or doping, superconductors display a decrease of both superfluid stiffness and critical temperatures. For very low superfluid densities these two quantities become of the same order, as evidenced by the dashed line representing the equality Θ = Tc. a:InO lies on this line in a large disorder range. Data from11,61,67 (NbN),20,51 (grAl),21,68 (LaAlO3/SrTiO3),69 (KTaO3),15,70,71 (MoGe),66 (TiN),38,72 (YBCO). Previous works on a:InO73 and In/a:InO composites71,74 are also added.

Extended Data Fig. 2 Berezinskii-Kosterlitz-Thouless transition of sample DP-Res11.

Left axis displays the superfluid stiffness versus temperature obtained from the T-dependence of the frequency shift of plasma modes via Θ(T) = Θ(0)(f(T)/f(0))2. Dashed red line represents the Berezinskii-Kosterlitz-Thouless universal critical line Θ(T) = 2/πT. Both curves cross exactly at the vortex unbinding temperature TBKT = 0.75 K. Right-axis shows the corresponding superconducting transition in the sheet resistance versus temperature. The dashed orange line illustrates our definition of Tc as a linear extrapolation of the resistance curve, giving Tc = 0.94 K.

Extended Data Fig. 3 Superinductance.

Wave impedance \(Z=\sqrt{l/{c}_{1}}\) versus sheet resistance. The impedance is normalized by h/4e2. All data points lie well above the line Z/(h/4e2) = 1/3, and some of them even achieve Z>h/4e2. This classifies them as superinductances.

Extended Data Fig. 4 Microwave dissipation in a:InO superconducting resonators.

a Evolution of a:InO resonators quality factors upon increasing power for three different sample environments, with varying sensitivity to surface dielectric loss. We studied resonators in the microstrip geometry (see Fig. 1) or embedded in 3D aluminum waveguides (see Fig. S3) with reduced surface loss participation ratio. A third type of sample is capped in-situ after a:InO deposition by a thin aluminum layer to replace the surface dissipation of a:InO by thin aluminum oxide. b Temperature evolution of an a:InO resonator (sample TC040) in 3D waveguide showing non-monotonous behavior. Solid lines in panels a and b are fits following a TLS model (see SI). c Evolution of the low-power, low-temperature quality factor with sheet resistance, for the samples reported in Extended Table I. Near the transition to insulator the quality factor remains >2 × 103. d Evolution of low-power and low-temperature quality factor with metal-substrate participation ratio (see SI). Full symbols correspond to resonators and transmon qubits in a 2D geometry (Ta75, Al and grAl59, TiN66, Al transmons76, a:InO), empty symbols show resonators measured in a 3D waveguide (grAl59, TiN66 and a:InO sample TC040). Dashed lines show the expected scaling for dielectric loss Qi = \({[{{\rm{p}}}_{{\rm{MS}}}\tan \delta ]}^{-1}\) for three values of \(\tan \delta\).

Extended Data Table 1 Summary of experimental data discussed in the text

Supplementary information

Supplementary Information

Supplementary Sections I–VI and Figs. 1–4.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1a,d,e.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charpentier, T., Perconte, D., Léger, S. et al. First-order quantum breakdown of superconductivity in an amorphous superconductor. Nat. Phys. 21, 104–109 (2025). https://doi.org/10.1038/s41567-024-02713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02713-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing