WaveguideQED.jl: An Efficient Framework for Simulating Non-Markovian Waveguide Quantum Electrodynamics
Quantum 9, 1710 (2025).
https://doi.org/10.22331/q-2025-04-17-1710
In this paper, we introduce a numerical framework designed to solve problems within the emerging field of Waveguide Quantum Electrodynamics (WQED). The framework is based on collision quantum optics, where a localized quantum system interacts sequentially with individual time-bin modes. This approach provides a physically intuitive model that allows researchers familiar with tools such as QuTiP in Python, Quantum Optics Toolbox for Matlab, or
in Julia to efficiently set up and execute WQED simulations. Despite its conceptual simplicity, we demonstrate the framework’s robust ability to handle complex WQED scenarios. These applications include the scattering of single- or two-photon pulses by quantum emitters or cavities, as well as the exploration of non-Markovian dynamics, where emitted photons are reflected back, thereby introducing feedback mechanisms.