The XP Stabiliser Formalism: a Generalisation of the Pauli Stabiliser Formalism with Arbitrary Phases
Quantum 6, 815 (2022).
https://doi.org/10.22331/q-2022-09-22-815
We propose an extension to the Pauli stabiliser formalism that includes fractional $2pi/N$ rotations around the $Z$ axis for some integer $N$. The resulting generalised stabiliser formalism – denoted the XP stabiliser formalism – allows for a wider range of states and codespaces to be represented. We describe the states which arise in the formalism, and demonstrate an equivalence between XP stabiliser states and ‘weighted hypergraph states’ – a generalisation of both hypergraph and weighted graph states. Given an arbitrary set of XP operators, we present algorithms for determining the codespace and logical operators for an XP code. Finally, we consider whether measurements of XP operators on XP codes can be classically simulated.