Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information
Quantum 5, 567 (2021).
https://doi.org/10.22331/q-2021-10-20-567
The Quantum Fisher Information matrix (QFIM) is a central metric in promising algorithms, such as Quantum Natural Gradient Descent and Variational Quantum Imaginary Time Evolution. Computing the full QFIM for a model with $d$ parameters, however, is computationally expensive and generally requires $mathcal{O}(d^2)$ function evaluations. To remedy these increasing costs in high-dimensional parameter spaces, we propose using simultaneous perturbation stochastic approximation techniques to approximate the QFIM at a constant cost. We present the resulting algorithm and successfully apply it to prepare Hamiltonian ground states and train Variational Quantum Boltzmann Machines.