Simple master equations for describing driven systems subject to classical non-Markovian noise
Quantum 7, 972 (2023).
https://doi.org/10.22331/q-2023-04-06-972
Driven quantum systems subject to non-Markovian noise are typically difficult to model even if the noise is classical. We present a systematic method based on generalized cumulant expansions for deriving a time-local master equation for such systems. This master equation has an intuitive form that directly parallels a standard Lindblad equation, but contains several surprising features: the combination of driving and non-Markovianity results in effective time-dependent dephasing rates that can be negative, and the noise can generate Hamiltonian renormalizations even though it is classical. We analyze in detail the highly relevant case of a Rabi-driven qubit subject to various kinds of non-Markovian noise including $1/f$ fluctuations, finding an excellent agreement between our master equation and numerically-exact simulations over relevant timescales. The approach outlined here is more accurate than commonly employed phenomenological master equations which ignore the interplay between driving and noise.