Quantum Edge Detection
Quantum 9, 1687 (2025).
https://doi.org/10.22331/q-2025-04-03-1687
This paper introduces quantum edge detection, aimed at locating boundaries of quantum domains where all particles share the same pure state. Focusing on the 1D scenario of a string of particles, we develop an optimal protocol for quantum edge detection, efficiently computing its success probability through Schur-Weyl duality and semidefinite programming techniques. We analyze the behavior of the success probability as a function of the string length and local dimension, with emphasis in the limit of long strings. We present a protocol based on square root measurement, which proves asymptotically optimal. Additionally, we explore a mixed quantum change point detection scenario where the state of particles transitions from known to unknown, which may find practical applications in detecting malfunctions in quantum devices