Open thread on new quantum supremacy claims
Happy 4th to those in the US!
The group of Chaoyang Lu and Jianwei Pan, based at USTC in China, has been on a serious quantum supremacy tear lately. Recall that last December, USTC announced the achievement of quantum supremacy via Gaussian BosonSampling, with 50-70 detected photons—the second claim of sampling-based quantum supremacy, after Google’s in Fall 2019. However, skeptics then poked holes in the USTC claim, showing how they could spoof the results with a classical computer, basically by reproducing the k-photon correlations for relatively small values of k. Debate over the details continues, but the Chinese group seeks to render the debate largely moot with a new and better Gaussian BosonSampling experiment, with 144 modes and up to 113 detected photons. They say they were able to measure k-photon correlations for k up to about 19, which if true would constitute a serious obstacle to the classical simulation strategies that people discussed for the previous experiment.
In the meantime, though, an overlapping group of authors had put out another paper the day before (!) reporting a sampling-based quantum supremacy experiment using superconducting qubits—extremely similar to what Google did (the same circuit depth and everything), except now with 56 qubits rather than 53.
I confess that I haven’t yet studied either paper in detail—among other reasons, because I’m on vacation with my family at the beach, and because I’m trying to spend what work-time I have on my own projects. But anyone who has read them, please use the comments of this post to discuss! Hopefully I’ll learn something.
To confine myself to some general comments: since Google’s announcement in Fall 2019, I’ve consistently said that sampling-based quantum supremacy is not yet a done deal. I’ve said that quantum supremacy seems important enough to want independent replications, and demonstrations in other hardware platforms like ion traps and photonics, and better gate fidelity, and better classical hardness, and better verification protocols. Most of all, I’ve said that we needed a genuine dialogue between the “quantum supremacists” and the classical skeptics: the former doing experiments and releasing all their data, the latter trying to design efficient classical simulations for those experiments, and so on in an iterative process. Just like in applied cryptography, we’d only have real confidence in a quantum supremacy claim once it had survived at least a few years of attacks by skeptics. So I’m delighted that this is precisely what’s now happening. USTC’s papers are two new volleys in this back-and-forth; we all eagerly await the next volley, whichever side it comes from.
While I’ve been trying for years to move away from the expectation that I blog about each and every QC announcement that someone messages me about, maybe I’ll also say a word about the recent announcement by IBM of a quantum advantage in space complexity (see here for popular article and here for arXiv preprint). There appears to be a nice theoretical result here, about the ability to evaluate any symmetric Boolean function with a single qubit in a branching-program-like model. I’d love to understand that result better. But to answer the question I received, this is another case where, once you know the protocol, you know both that the experiment can be done and exactly what its result will be (namely, the thing predicted by QM). So I think the interest is almost entirely in the protocol itself.