Lighting up ultrafast magnetism in a metal oxide
What happens when very short pulses of laser light strike a magnetic material? A large international collaboration led by the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory set out to answer this very question. As they just reported in the Proceedings of the National Academy of Sciences, the laser suppressed magnetic order across the entire material for several picoseconds, or trillionths of a second. Understanding how magnetic correlations change on ultrafast timescales is the first step in being able to control magnetism in application-oriented ways. For example, with such control, we may be able to more quickly write data to memory devices or enhance superconductivity (the phenomenon in which a material conducts electricity without energy loss), which often competes with other states like magnetism.
Click to rate this post!
[Total: 0 Average: 0]
You have already voted for this article
(Visited 11 times, 1 visits today)