Joint-measurability and quantum communication with untrusted devices
Quantum 8, 1574 (2024).
https://doi.org/10.22331/q-2024-12-23-1574
Photon loss represents a major challenge for the implementation of quantum communication protocols with untrusted devices, e.g. in the device-independent (DI) or semi-DI approaches. Determining critical loss thresholds is usually done in case-by-case studies. In the present work, we develop a general framework for characterizing the admissible levels of loss and noise in a wide range of scenarios and protocols with untrusted measurement devices. In particular, we present general bounds that apply to prepare-and-measure protocols for the semi-DI approach, as well as to Bell tests for DI protocols. A key step in our work is to establish a general connection between quantum protocols with untrusted measurement devices and the fundamental notions of channel extendibility and joint-measurability, which capture essential aspects of the communication and measurement of quantum information. In particular, this leads us to introduce the notion of partial joint-measurability, which naturally arises within quantum cryptography.