Graph-theoretic insights on the constructability of complex entangled states
Quantum 8, 1396 (2024).
https://doi.org/10.22331/q-2024-07-03-1396
The most efficient automated way to construct a large class of quantum photonic experiments is via abstract representation of graphs with certain properties. While new directions were explored using Artificial intelligence and SAT solvers to find such graphs, it becomes computationally infeasible to do so as the size of the graph increases. So, we take an analytical approach and introduce the technique of local sparsification on experiment graphs, using which we answer a crucial open question in experimental quantum optics, namely whether certain complex entangled quantum states can be constructed. This provides us with more insights into quantum resource theory, the limitation of specific quantum photonic systems and initiates the use of graph-theoretic techniques for designing quantum physics experiments.