General Probabilistic Theories with a Gleason-type Theorem
Quantum 5, 588 (2021).
https://doi.org/10.22331/q-2021-11-25-588
Gleason-type theorems for quantum theory allow one to recover the quantum state space by assuming that (i) states consistently assign probabilities to measurement outcomes and that (ii) there is a unique state for every such assignment. We identify the class of general probabilistic theories which also admit Gleason-type theorems. It contains theories satisfying the no-restriction hypothesis as well as others which can simulate such an unrestricted theory arbitrarily well when allowing for post-selection on measurement outcomes. Our result also implies that the standard no-restriction hypothesis applied to effects is not equivalent to the dual no-restriction hypothesis applied to states which is found to be less restrictive.