Emergent magnetic monopoles controlled at room temperature
Three dimensional (3D) nano-networks promise a new era in modern solid state physics with numerous applications in photonics, bio-medicine, and spintronics. The realization of 3D magnetic nano-architectures could enable ultra-fast and low-energy data storage devices. Due to competing magnetic interactions in these systems, magnetic charges or magnetic monopoles can emerge, which can be utilized as mobile, binary information carriers. Researchers at University of Vienna have now designed the first 3D artificial spin ice lattice hosting unbound magnetic charges. The results published in the journal npj Computational Materials present a first theoretical demonstration that, in the new lattice, the magnetic monopoles are stable at room temperature and can be steered on-demand by external magnetic fields.
Click to rate this post!
[Total: 0 Average: 0]
You have already voted for this article
(Visited 19 times, 1 visits today)