Double-bracket quantum algorithms for diagonalization
Quantum 8, 1316 (2024).
https://doi.org/10.22331/q-2024-04-09-1316
This work proposes double-bracket iterations as a framework for obtaining diagonalizing quantum circuits. Their implementation on a quantum computer consists of interlacing evolutions generated by the input Hamiltonian with diagonal evolutions which can be chosen variationally. No qubit overheads or controlled-unitary operations are needed but the method is recursive which makes the circuit depth grow exponentially with the number of recursion steps. To make near-term implementations viable, the proposal includes optimization of diagonal evolution generators and of recursion step durations. Indeed, thanks to this numerical examples show that the expressive power of double-bracket iterations suffices to approximate eigenstates of relevant quantum models with few recursion steps. Compared to brute-force optimization of unstructured circuits double-bracket iterations do not suffer from the same trainability limitations. Moreover, with an implementation cost lower than required for quantum phase estimation they are more suitable for near-term quantum computing experiments. More broadly, this work opens a pathway for constructing purposeful quantum algorithms based on so-called double-bracket flows also for tasks different from diagonalization and thus enlarges the quantum computing toolkit geared towards practical physics problems.