Correlations constrained by composite measurements
Quantum 7, 1080 (2023).
https://doi.org/10.22331/q-2023-08-10-1080
How to understand the set of correlations admissible in nature is one outstanding open problem in the core of the foundations of quantum theory. Here we take a complementary viewpoint to the device-independent approach, and explore the correlations that physical theories may feature when restricted by some particular constraints on their measurements. We show that demanding that a theory exhibits a composite measurement imposes a hierarchy of constraints on the structure of its sets of states and effects, which translate to a hierarchy of constraints on the allowed correlations themselves. We moreover focus on the particular case where one demands the existence of a correlated measurement that reads out the parity of local fiducial measurements. By formulating a non-linear Optimisation Problem, and semidefinite relaxations of it, we explore the consequences of the existence of such a parity reading measurement for violations of Bell inequalities. In particular, we show that in certain situations this assumption has surprisingly strong consequences, namely, that Tsirelson’s bound can be recovered.