Certification of quantum state functions under partial information
Quantum 8, 1442 (2024).
https://doi.org/10.22331/q-2024-08-16-1442
Convex functions of quantum states play a key role in quantum physics, with examples ranging from Bell inequalities to von Neumann entropy. However, in experimental scenarios, direct measurements of these functions are often impractical. We address this issue by introducing two methods for determining rigorous confidence bounds for convex functions based on informationally incomplete measurements. Our approach outperforms existing protocols by providing tighter bounds for a fixed confidence level and number of measurements. We evaluate the performance of our methods using both numerical and experimental data. Our findings demonstrate the efficacy of our approach, paving the way for improved quantum state certification in real-world applications.