An international team of scientists led by Dr. Lukas Bruder, junior research group leader at the Institute of Physics, University of Freiburg, has succeeded in producing and directly controlling hybrid electron-photon quantum states in helium […]
An international team of scientists led by Dr. Lukas Bruder, junior research group leader at the Institute of Physics, University of Freiburg, has succeeded in producing and directly controlling hybrid electron-photon quantum states in helium […]
Researchers at Tohoku University and the University of California, Santa Barbara, have developed new computing hardware that utilizes a Gaussian probabilistic bit made from a stochastic spintronics device. This innovation is expected to provide an […]
Three distinct topological degrees of freedom are used to define all topological spin textures based on out-of-plane and in-plane spin configurations: the topological charge, representing the number of times the magnetization vector m wraps around […]
Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands. […]
Current laser technologies for the extended short-wave infrared (SWIR) spectral range rely on expensive and complex materials, limiting their scalability and affordability. To address these challenges, ICFO researchers have presented a novel approach based on […]
About 100 years ago, humanity learned to see with the help of electrons. In 1924, Louis de Broglie posited that—like light particles—electrons have wave properties. In 1927, the U.S. physicists Davisson and Germer provided experimental […]
A new study by Rice University physicist Qimiao Si unravels the enigmatic behaviors of quantum critical metals—materials that defy conventional physics at low temperatures. Published in Nature Physics Dec. 9, the research examines quantum critical […]
Quantum error correction that suppresses errors below a critical threshold needed for achieving future practical quantum computing applications is demonstrated on the newest generation quantum chips from Google Quantum AI, reports a paper in Nature […]
A team of researchers from the University of Cologne, Hasselt University (Belgium) and the University of St Andrews (Scotland) has succeeded in using the quantum mechanical principle of strong light-matter coupling for an optical technology […]
Spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing are powerful nonlinear optical processes that can produce multi-photon beams of light with unique quantum properties. These processes could be leveraged to create various quantum technologies, including […]
Recent Comments