Busy Beaver Updates: Now Even Busier
Way back in the covid-filled summer of 2020, I wrote a survey article about the ridiculously-rapidly-growing Busy Beaver function. My survey then expanded to nearly twice its original length, with the ideas, observations, and open problems of commenters on this blog. Ever since, I’ve felt a sort of duty to blog later developments in BusyBeaverology as well. It’s like, I’ve built my dam, I’ve built my lodge, I’m here in the pond to stay!
So without further ado:
- This May, Pavel Kropitz showed (see also here) that $$ BB(6) ge 10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10}}}}}}}}}}}}}} $$ (15 times)—thereby blasting through his own 2010 record, that BB(6)≥1036,534. Or, for those tuning in from home: Kropitz constructed a 6-state, 2-symbol, 1-tape Turing machine that he’s proven to run for at least the above number of steps, when started on an initially blank tape, and then halt. (And his result was verified by Pascal Michel, the modern keeper of Busy Beaver lore.) In my 2020 survey, I’d relayed an open problem posed by my then 7-year-old daughter Lily: namely, what’s the first n such that BB(n) exceeds A(n), the nth value of the Ackermann function? All that’s been proven is that this n is at least 5 and at most 18. Kropitz’s discovery doesn’t settle the question—titanic though it is, his lower bound on BB(6) is still less than A(6) (!!)—but in light of the new result, I now strongly conjecture that the crossover happens at either n=6 or n=7. Huge congratulations to Pavel!
- Tristan Stérin and Damien Woods wrote to tell me about a new collaborative initiative they’ve launched called BB Challenge. With the participation of other leading figures in the neither-large-nor-sprawling Busy Beaver world, Tristan and Damien are aiming, not only to pin down the value of BB(5)—proving or disproving the longstanding conjecture that BB(5)=47,176,870—but to do so in a formally verified way, with none of the old ambiguities about which Turing machines have or haven’t been satisfactorily analyzed. In my survey article, I’d passed along a claim that, of all the 5-state machines, only 25 remained to be analyzed, to understand whether or not they run forever—the “default guess” being that they all do, but that proving it for some of them might require fearsomely difficult number theory. With their more formal and cautious approach, Tristan and Damien still count 1.5 million (!) holdout machines, but they hope to cut down that number extremely rapidly. If you’re feeling yourself successfully nerd-sniped, please join the quest and help them out!
Click to rate this post!
[Total: 0 Average: 0]
You have already voted for this article
(Visited 43 times, 1 visits today)