An alarming trend in K-12 math education: a guest post and an open letter
Today, I’m turning over Shtetl-Optimized to an extremely important guest post by theoretical computer scientists Boaz Barak of Harvard and Edith Cohen of Google (cross-posted on the windows on theory blog). In addition to the post below, please read—and if relevant, consider signing—our open letter about math education in the US, which now has over 150 signatories, including Fields Medalists, Turing Award winners, and Nobel laureates. Finally, check out our fuller analysis of what the California Mathematics Framework is poised to do and why it’s such an urgent crisis for math education. I’m particularly grateful to my colleagues for their writing efforts, since I would never have been able to discuss what’s happening in such relatively measured words. –Scott Aaronson
Mathematical education at the K-12 level is critical for preparation for STEM careers. An ongoing challenge to the US K-12 system is to improve the preparation of students for advanced mathematics courses and expand access and enrollment in these courses. As stated by a Department of Education report “taking Algebra I before high school … can set students up for a strong foundation of STEM education and open the door for various college and career options.” The report states that while 80% of all students have access to Algebra I in middle school, only 24% enroll. This is also why the goal of Bob Moses’ Algebra Project is to ensure that “every child must master algebra, preferably by eighth grade, for algebra is the gateway to the college-prep curriculum, which in turn is the path to higher education.”
The most significant potential for growth is among African American or Latino students, among whom only 12% enroll in Algebra before high school. This untapped potential has longer-term implications for both society and individuals. For example, although African Americans and Latinos comprise 13% and 18% (respectively) of the overall US population, they only account for 4% and 11% of engineering degrees. There is also a gap in access by income: Calculus is offered in 92% of schools serving the top income quartile but only in 77% of schools serving the bottom quartile (as measured by the share of students eligible for free or reduced-price lunch). Thus minority and low income students have less access to STEM jobs, which yield more than double the median salary of non-STEM jobs, and are projected to grow at a 50% higher rate over the next decade.
Given these disparities, we applaud efforts such as the Algebra Project, the Calculus Project, and Bridge to Enter Advanced Mathematics that increase access to advanced mathematical education to underserved students. However, we are concerned by recent approaches, such as the proposed California Math Framework (CMF) revisions, that take the opposite direction.
See this document for a detailed analysis and critique of the CMF, but the bottom line is that rather than trying to elevate under-served students, such “reforms” reduce access and options for all students. In particular, the CMF encourages schools to stop offering Algebra I in middle school, while placing obstacles (such as doubling-up, compressed courses, or outside-of-school private courses) in the way of those who want to take advanced math in higher grades. When similar reforms were implemented in San Francisco, they resulted in an “inequitable patchwork scheme” of workarounds that affluent students could access but that their less privileged counterparts could not. The CMF also promotes trendy and shallow courses (such as a nearly math-free version of “data science”) as recommended alternatives to foundational mathematical courses such as Algebra and Calculus. These courses do not prepare students even for careers in data science itself!
As educators and practitioners, we have seen first-hand the value of solid foundations in mathematics for pursuing college-level STEM education and a productive STEM career.
While well-intentioned, we believe that many of the changes proposed by the CMF are deeply misguided and will disproportionately harm under-resourced students. Adopting them would result in a student population that is less prepared to succeed in STEM and other 4-year quantitative degrees in college. The CMF states that “many students, parents, and teachers encourage acceleration beginning in grade eight (or sooner) because of mistaken beliefs that Calculus is an important high school goal.” Students, parents, and teachers are not mistaken. Neither is the National Society of Black Engineers (NSBE), which set in 2015 a goal to double the number of African American students taking calculus by 2025. Calculus is not the only goal of K-12 math education, but it is important for students who wish to prepare for STEM in college and beyond.
We agree that calculus is not the “be-all and end-all” of high-school mathematics education. In particular, we encourage introducing options such as logic, probability, discrete mathematics, and algorithms design in the K-12 curriculum, as they can be valuable foundations for STEM education in college. However, when taught beyond a superficial level (which unfortunately is not the case in the CMF “data science” proposals), these topics are not any easier than calculus. They require the same foundations of logic, algebra, and functions, and fluency with numbers and calculations. Indeed, the career paths with the highest potential for growth require more and deeper mathematical preparation than ever before. Calculus and other mathematical foundations are not important because they are admission requirements for colleges, or because they are relics of the “Sputnik era”. They are important because they provide fundamental knowledge and ways of thinking that are necessary for success in these fast growing and in-demand fields.
We also fully support incorporating introductory data analysis and coding skills in the K-12 curriculum (and there are some good approaches for doing so). But we strongly disagree with marketing such skills as replacing foundational skills in algebra and calculus when preparing for 4-year college degrees in STEM and other quantitative fields. These topics are important and build on basic math foundations but are not a replacement for such foundations any more than social media skills can replace reading and writing foundations.
Given the above, we, together with more than 150 scientists, educators, and practitioners in STEM, have signed an open letter expressing our concerns with such trends. The signatories include STEM faculty in public and private universities and practitioners from industry. They include educators with decades of experience teaching students at all levels, as well as researchers that won the highest awards in their fields, including the Fields Medal and the Turing Award. Signers also include people vested in mathematical high-school education, such as Adrian Mims (founder of The Calculus Project) and Jelani Nelson (UC Berkeley EECS professor and founder of AddisCoder) who have spearheaded projects to increase access to underserved populations.
We encourage you to read the letter, and if you are a US-based STEM professional or educator, consider signing it as well: https://bit.ly/mathedletter
Unfortunately, in recent years, debates on US education have become politicized. The letter is not affiliated with any political organization, and we believe that the issues we highlight transcend current political debates. After all, expanding access to mathematical education is both socially just and economically wise.
Note: The above guest post reflects the views of its authors, Boaz Barak and Edith Cohen. Any comments below by them, me, or other signatories reflect their own views, not necessarily those of the entire group. –SA