A little bit of self-correction
Quantum 9, 1820 (2025).
https://doi.org/10.22331/q-2025-08-04-1820
We investigate the emergence of stable subspaces in the low-temperature quantum thermal dynamics of finite spin chains. Our analysis reveals the existence of effective decoherence-free qudit subspaces, persisting for timescales exponential in $beta$. Surprisingly, the appearance of metastable subspaces is not directly related to the entanglement structure of the ground state(s). Rather, they arise from symmetry relations in low-lying excited states. Despite their stability within a ‘phase’, practical realization of stable qubits is hindered by susceptibility to symmetry-breaking perturbations. This work highlights that there can be non-trivial quantum behavior in the thermal dynamics of noncommuting many body models, and opens the door to more extensive studies of self-correction in such systems.
