Fault-tolerant syndrome extraction and cat state preparation with fewer qubits
Quantum 7, 1154 (2023).
https://doi.org/10.22331/q-2023-10-24-1154
We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error correction, specifically syndrome bit measurement, and cat state preparation. For distance-three fault-tolerant syndrome extraction, we show an exponential reduction in qubit overhead over the previous best protocol. For a weight-$w$ stabilizer, we demonstrate that stabilizer measurement tolerating one fault needs at most $lceil log_2 w rceil + 1$ ancilla qubits. If qubits reset quickly, four ancillas suffice. We also study the preparation of entangled cat states, and prove that the overhead for distance-three fault tolerance is logarithmic in the cat state size. These results apply both to near-term experiments with a few qubits, and to the general study of the asymptotic resource requirements of syndrome measurement and state preparation.
With $a$ flag qubits, previous methods use $O(a)$ flag patterns to identify faults. In order to use the same flag qubits more efficiently, we show how to use nearly all $2^a$ possible flag patterns, by constructing maximal-length paths through the $a$-dimensional hypercube.