Robust phase-controlled gates for scalable atomic quantum processors using optical standing waves
Quantum 7, 941 (2023).
https://doi.org/10.22331/q-2023-03-09-941
A simple scheme is presented for realizing robust optically controlled quantum gates for scalable atomic quantum processors by driving the qubits with optical standing waves. Atoms localized close to the antinodes of the standing wave can realize phase-controlled quantum operations that are potentially more than an order of magnitude less sensitive to the local optical phase and atomic motion than corresponding travelling wave configurations. The scheme is compatible with robust optimal control techniques and spatial qubit addressing in atomic arrays to realize phase controlled operations without the need for tight focusing and precise positioning of the control lasers. This will be particularly beneficial for quantum gates involving Doppler sensitive optical frequency transitions and provides an all optical route to scaling up atomic quantum processors.