Computationally Efficient Quantum Expectation with Extended Bell Measurements
Quantum 6, 688 (2022).
https://doi.org/10.22331/q-2022-04-13-688
Evaluating an expectation value of an arbitrary observable $Ain{mathbb C}^{2^ntimes 2^n}$ through naïve Pauli measurements requires a large number of terms to be evaluated. We approach this issue using a method based on Bell measurement, which we refer to as the extended Bell measurement method. This analytical method quickly assembles the $4^n$ matrix elements into at most $2^{n+1}$ groups for simultaneous measurements in $O(nd)$ time, where $d$ is the number of non-zero elements of $A$. The number of groups is particularly small when $A$ is a band matrix. When the bandwidth of $A$ is $k=O(n^c)$, the number of groups for simultaneous measurement reduces to $O(n^{c+1})$. In addition, when non-zero elements densely fill the band, the variance is $O((n^{c+1}/2^n),{rm tr}(A^2))$, which is small compared with the variances of existing methods. The proposed method requires a few additional gates for each measurement, namely one Hadamard gate, one phase gate and at most $n-1$ CNOT gates. Experimental results on an IBM-Q system show the computational efficiency and scalability of the proposed scheme, compared with existing state-of-the-art approaches. Code is available at https://github.com/ToyotaCRDL/extended-bell-measurements.