Quantum games and synchronicity
Quantum 10, 1964 (2026).
https://doi.org/10.22331/q-2026-01-14-1964
In the flavour of categorical quantum mechanics, we extend nonlocal games to allow quantum questions and answers, using quantum sets (special symmetric dagger Frobenius algebras) and the quantum functions of Musto, Reutter, and Verdon. Equations are presented using a diagrammatic calculus for tensor categories. To this quantum question and answer setting, we extend the standard definitions, including strategies, correlations, and synchronicity, and we use these definitions to extend results about synchronicity. We extend the graph homomorphism (isomorphism) game to quantum graphs, and show it is synchronous (bisynchronous) and connect its perfect (bi)strategies to quantum graph homomorphisms (isomorphisms). Our extended definitions agree with the existing quantum games literature, except in the case of synchronicity.
Talk at Isaac Newton Institute relating to this paper:
